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Abstract

This paper describes the development and testing results for a system of Cloud-
based mirrors for physical vehicles called "Avacars." Avacars duplicate parameters from
On-Board Diagnostics, accelerometers, and GPS sensors installed in a vehicle as part of
the MIT CloudThink set of standards. These Avacars may then be used as input and
output for a diverse set of applications. Avacars are created by a custom-designed
portable cellphone used to instrument a vehicle without user intervention and stored to a
secure and private server.

The first section of the document details the background for the Avacar project. It
describes available technology and current unmet needs, and presents the solution of an
open-standard based application platform for improving access to vehicle diagnostic data
and creating new opportunities to build applications.

The second section explains the need for an open platform in the context of end-
user and developer feedback along with canonical application examples including
vehicle-miles-traveled (VMT) monitoring and generation of fuel metrics to validate
programs similar to the United States Corporate Average Fuel Economy (CAFE)
standards. This section also explores the value of open and interoperable data as well as
transparency in hardware design.

Section three describes the implemented hardware and novel features facilitated
by the hardware, including power saving and location-aware application development.
This section includes an analysis of the problems faced in the design and deployment
process, as well as steps the author might have taken to address these issues prior to their
manifestation.

Section four discusses the results of the hardware and platform in testing, and
includes visualizations of data collected with the CloudThink platform. The author found
that the hardware and platform were capable of addressing the needs of both VMT and
fuel economy monitoring applications, though further testing is necessary to validate the
results. The author also successfully utilized the platform to extend applications to
incorporate non-OBD vehicle sensors and actuators. This allows for the creation of large
datasets while providing value to users who chose to test the system, in the form of car
applications that repackage information into digestible formats or adding features
otherwise not typically available, e.g. unlocking from a cell phone.

The paper closes by exploring future use opportunities for the CloudThink
platform in monitoring non-automotive sensor enabled devices.

Thesis Supervisor. Sanjay E. Sarma
Title: Professor of Mechanical Engineering
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1. Introduction: On-Board Diagnostics, the Internet of Things, and the Need for
Data

This thesis is about the design, development, implementation, and testing of a

platform of "Avacars," or digital mirrors of physical objects (automobiles) for use as

input and output for use with an intelligent API supporting the development of web-based

applications. Avacars are the first step to proving the utility of digital duplication as a

means of building Cloud-centric application platforms, and a demonstration of how

elastic computing can power interoperable data caches. They are the first deployed

example of a new program called "CloudThink" in development by the MIT Field

Intelligence Laboratory, a collection of open standards describing everything from

communication between sensors and servers to security to application programming

interfaces (APIs). CloudThink aims to unify access and power the development of next-

generation Internet of Things (IoT) devices along with cultivating the generation and

analytics of Big Data.

There has been growing need for a well-documented, open-standard based

approach to digital object mirroring. Further, there is an unaddressed and growing

demand for vehicle diagnostics and informatics.' This thesis continues the work of the

author's undergraduate research in an attempt to address both demands and solve several

problems faced by the Internet of Things and vehicle diagnostics industries today [1]. To

understand the need for innovative new technologies in these fields, it is necessary to

understand the wealth of information present in vehicles, the complexity required to

access even basic diagnostic parameters, the state of enabling technologies, and the

expected consumer interest.

This report is organized as a background discussion of in-vehicle networks,

attempts at standardization, barriers to deployment for the Internet of Things, followed by

discussion of the design methodology, testing, and lessons learned while building and

testing CloudThink's canonical vehicle interfacing hardware (the CANPuter), embedded

software, and server platform. The document closes with a look toward future

1 Rev: http:/devtoaster.com/products/rev/, Automatic: http://automatic.com/, Torque: http://torue-bhp.com/, Right to

Repair: http://righttorepair.org
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opportunities to leverage the CloudThink framework to drive Big Data generation and

analytics.

1.1 Increasing Efficiency Demands Complicated Vehicles: A Solution to

Diagnose and Troubleshoot Problems

Fuel economy became a national issue in the United States after the energy crisis

of the 1970's. Fuel shortages demanded more efficient engine operation, while a previous

push toward vehicle size and weight increases drove power requirements higher and

posed a threat to auto manufacturers' abilities to meet new efficiency targets [2]. The

historic solution to improving power had been to increase fuel delivery and engine

displacement, but this increased fuel consumption would contrast with the federal

government's 1975 Corporate Average Fuel Economy (CAFE) standards [3]. Since

carbureted engines were incapable of meeting these targets, manufacturers instead

implemented fuel injection and deployed computers to allow the use of multi-variable

fuel maps to improve efficiency without sacrificing power. A number of suppliers

manufactured these engine control computers, and per-manufacturer On Board

Diagnostics (OBD) followed shortly after to diagnose computer and emission related

issues (see General Motor's Assembly Line Diagnostic Link [ALDL] as an early

example). These OBD systems allowed neighborhood mechanics to diagnose these more

complicated systems without special training. While these systems began to address the

needs of mechanics and consumers for diagnostic data, no single system was well

defined, and many cars required special software, adapter cables, and hardware interfaces

to complete even the simplest diagnosis.

The Society of Automotive Engineers (SAE) standardized a generic form of OBD

in 1988, and the California Air Resources Bureau (CARB), recognizing the utility of a

universal process for testing vehicular emissions, mandated a specific implementation of

the diagnostic interface on all vehicles sold in the United States beginning in 1991 [4].

Automobile manufacturers took this redesign mandate as an opportunity to deploy

additional sensors and actuators while the vehicle architecture design was undergoing

rework in an attempt to catch up and future-proof. As was the case with early diagnostic

systems, manufacturers created their own proprietary network protocols [5]. This made
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the limited set of legislated data difficult to capture, requiring an array of tools, adapters,

and software packages. Although OBD has evolved since 1988, key information remains

obfuscated, though market forces are driving towards a convergent diagnostic standard.

1.1 OBDI: A First-attempt at Computerized Vehicle Diagnostics

OBDI's migration from analog to digital signaling simplified the automotive

wiring harness by eliminating the need to run miles of wire. No longer would every new

sensor require two or three wires feeding it; instead, data were multiplexedand early

addressing and decoding schemes developed. The use of networked digital meant that

data never before sensed as part of a vehicle's network could be made available to the

dealership and mechanic as live or stored sensor readings. Though limited storage was

available and many sensors could not be read in real-time, this move also allowed for

further integration of vehicle computer systems and marked the beginning of the now-

ubiquitous vehicle intranet.

OBDI was a minor success for emissions-monitoring purposes despite the fact

that every manufacturer offered a unique implementation. New data were available, but a

neighborhood mechanic could not keep up with the volume of software and hardware

required to analyze and service every make, and more often than not, would become

frustrated with new vehicles and troubleshoot without making use of OBD. There was a

need for a new generation of standardization, termed On-Board Diagnostics II (OBDII).

By design, OBDII would provide a more unified method for accessing emissions data and

would have a more structured deployment, limiting the freedom manufacturers could take

in defining their networks' hardware and software. OBDII would also bring with it more

advanced component monitoring, eschewing threshold checks for active sensor analysis

[6].

1.2 OBDII: The Logical Progression Toward a (More) Unified Diagnostic

System

OBDII was a joint effort of the California Air Resources Board, the

Environmental Protection Agency, and the Society of Automotive Engineers. It built

upon OBDI's near-binary parameter reporting and defines several modes of data access
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ranging from live and freeze-frame data to descriptive trouble codes. OBDII

documentation defines standard methods for accessing emissions related parameters

along with a wide list of parameter definitions that are standardized but for which

implementation is not required [7]. Manufacturers were also encouraged to include

additional Parameter IDentifiers (PIDs) not defined in the standards description, but these

manufacturers would not have to disclose their proprietary identifiers and scaling factor,

making their implementation useless without costly database licenses [8]. This lack of

freely available enhanced data made it difficult to perform complex diagnostics and

limited the utility of the legislated data to basic visualization or simple diagnostic

routines not significantly more advanced than those available with OBDI. While

interesting parameters - such as fuel level, steering wheel angle, or accelerometer data -

are likely present on a network, the lack of legislation surrounding these metrics limits

their utility in enhancing informatics.

OBDII is a call and response protocol typically built upon a form of serial data

transfer defined in SAE standard J1979. In many implementations, a user enters a mode

and parameter into a scan tool and this tool sends these data to the network, awaiting a

response. Devices on the network recognize responsibility and transmit a response for

display on the device. Modes $01 (live data) and $02 (freeze frame data) rely upon a

documented list of parameter identifiers and associated scaling factors to report data.

Replies may include proper data, a null data identifier, or an invariant response,

depending on the computer architecture and error handling implemented in the system

[7].

Despite the wealth of documentation surrounding OBDII, the data remain difficult

to access. It appears that mechanical engineers played a large role in the development

process, and OBDII was built around legacy systems from early automotive networks

where data rates were low and Micro Electromechanical Systems (MEMS) devices and

flash memory were not available. There was a lack of foresight in design: for example,

call and response parameters must be read sequentially - there are no multi-sample

requests, leading to a constantly active data bus when attempting to monitor several

parameters. Data transfers are serial rather than parallel, on-board storage is minimal, and

there are no provisions for increased storage or easy diagnostic system upgrades as new
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sensors are invented and deployed. There are no true learning algorithms for predictive

failure reporting, and things that developers would expect to be available universally -

such as the reading on a fuel gauge - seem to have been afterthoughts. Further, many

devices on the network that are not emission-related are simply inaccessible using

OBDII, despite these sensors sharing a common communication interface and the

presence of sufficient bandwidth to provide these data [7] [9].

Part of the reason for the difficulty in accessing data follows manufacturers'

different OBDI implementation. Early OBDII hardware had to support five distinct

hardware and software implementations of in-vehicle networks, ranging from Pulse

Width Modulation (PWM) signaling to serial data streams to Controller Area Networks

(CAN). A vehicle could have any of the five networks, making diagnostic hardware

costly, cumbersome, and often unreliable due to complexity.

In the United States, as of model year 2008, the complexity of accessing

diagnostic data was reduced. The standards still did not require the availability of non-

emissions parameters, though there has been progress in that only one network may be

used for diagnostics in newly manufactured vehicles: CANBus [10]. The use of a single

network simplified data access, provided higher speed communications, and ensured the

availability of less expensive hardware through economies of scale. CANBus was well

documented and provided a reliable supply chain for hardware developers, though there

were limitations in that CANBus followed the outdated OBDII standard (however, with

CANBus more than any other installed network, there is hope that other sensor data

might be present and easily readable due to the higher bandwidth and robust addressing

scheme).

To expand on that claim, many automobile manufacturers deployed additional

sensors and actuators when CANBus was required with the intent of leaving the majority

of the intranet infrastructure unchanged for years to come. This design strategy was

largely effective, and today, modem vehicle computer modules run millions of lines of

code and complete millions of calculations every second performing everything from

stability control to preventing skidding and maximizing fuel economy and power

simultaneously.
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1.3 Non-OBD Networks: What, Where, and How

The network found in vehicles today contains significant non-emissions data [9]

[11]. The engine computer is one of dozens of computers in a car, reading sensors,

logging data, and handling more and more of the task of keeping a vehicle in good

operating shape. The typical new car has computers, hundreds of sensors, and actuators

for everything from checking to see which seatbelts are buckled to measuring the

barometric pressure and adjusting fuel mix accordingly. These devices communicate

across one of several networks, depending on their bandwidth requirements and

input/output needs.

A typical vehicle might have a high-speed, safety critical network and four to five

other networks handling less critical tasks. These networks never sit idle, with engine

computers talking to gauges, security modules interfacing with locks, and parking sensors

communicating with navigation units, among other connections. Sometimes,

communication occurs across networks by means of a gateway device, which has been

programmed with special rules and conversion hardware to allow data to seamlessly flow

from one location to another. This device keeps networks largely standalone and isolated

from one another for security purposes and to allow networks to operate without crosstalk

preventing critical communication. A gateway device is the vehicle's closest analog to a

firewall. Every car is different, except for the high-speed bus's central functionality,

which is locked down as the arbiter for OBDII [12].

A typical vehicle features dozens of computers residing on one of several subnets,

which these subnets consisting of a high-speed, "critical" network, a medium-speed

infotainment network, and a low-speed "comfort and convenience" network [13] [14].

14



Body Control Module Engine Control Module Transmission Control Module
(Gateway) H

I S
(Critical/Safety)

J 962 Diagnostic Connector OBD subset

Head Unit Steering Wheel Controls M

S

(Infotainment) A
N

HVAC Control Ultrasonic Park Assist

L
S

(Convenience)

N

Figure 1: A representative image depicting the three major
networks found in modern vehicles, a High-Speed (HS)
network for "critical" data such as OBDII, a Medium-
Speed (MS) network, typically for infotainment, and a Low-
Speed (LS) network, typically used for comfort and
convenience features (C&C). Dotted lines indicate
discretionary connections.

Some common automotive networks are similar to TCP/IP connections.

Generally, these intranet protocols define data validation routines in conjunction with an

arbitration scheme to specify message importance to ensure high importance messages

are received by their intended recipients and that messages are not flooded to the point

that they cannot transmit on a particular bus. The devices on this network operate like

various web interactions, either broadcasting at constant intervals (like a keep-alive

packet), transmitting upon event (or state changes, like button presses), or are set up as a

call/response to serve up the most recent data. This last configuration is similar to

(Asynchronous Javascript and XML) AJAX in that it requests asynchronous broadcasts

of data across sources for use and display at another node's location.

The most commonly found networks in vehicles are Controller Area Network

(CAN), Local Interconnect Network (LIN), and Media-Oriented Serial Transfer (MOST).

CANBus has multiple single- and dual-wire variants and is known for its high maximum
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bandwidth, well-defined arbitration schema, and intelligent addressing scheme (OBDII

uses a dual-wire, high speed variant). CAN is used in every modem vehicle and has been

applied to everything from safety-critical systems like brake controllers to passenger

infotainment. LIN is a single-wire, UART-like master/multi-slave network. These

networks are low-speed and typically used for convenience items such as lock control or

window switches. MOST is typically used for media devices and in very high-speed

networks but is not used in other locations due to its relatively high cost.

Due to the unification and de-duplication of design by automotive suppliers, many

sensors today reside on a form of CANBus network and harbor the possibility of

providing richer diagnostic data to compatible tools. Regardless of network, however,

non-emissions data are difficult to access reliably and repeatedly without manufacturer

help - and auto -Manufacturers are unwilling to share, having come to see software as a

key brand differentiator and fearing safety and liability concerns - even though these

networks lack encryption and are viewable with inexpensive tools. Access to these data

will ultimately require documenting manufacturer-specific software and the development

of custom hardware to access this wealth of data.

1.4 CANBus Explained: Unified Access for Next-Generation Sensors

CANBus, or the Controller Area Network (bus), is the most broadly deployed in-

vehicle network and the basis of OBDII for all vehicles manufactured after 2008.

CANBus is notable for its low cost, dual wire signaling, arbitration schema, and the fact

that it does not require a host microcontroller to negotiate network traffic thereby

reducing cost and software complexity. CAN is a multi-master broadcast serial bus.

A CAN packet consists of an arbitration ID, defining the priority, and perhaps the

source and destination address (e.g. a sensor and an actuator or control module), along

with up to eight data bytes that are sent serially. CAN has four typical data frames: data,

remote, error, and overload frames.

A data frame is either base or extended format, with 11- and 29-bits,

respectively. These frames contain a start-of-frame, identifier, transmission request, idle,

reserved bit, and length bit, followed by the data field from 0-8 bytes. A CRC15, ACK,

and EOF series of bits ensures the data were transmitted properly. If messages are longer

16



than 8 bytes, ISO-15765-2 multi-frame messages are sent. The first frame includes a

header identifying the start and total message length, and the transmitting node waits to

receive an acknowledgement of a multi-frame reply prior to transmitting beyond the first

frame [15].

A remote frame is similar to a data frame, but is typically sent by a sensor at a

regular interval or on an autonomous scheduler. A data frame is dominant to a remote

frame.

An error frame defines an error message that may trigger other events, such as a

delay or a retransmission. The error frame also increments a counter to help identify

systemic failures in hardware and software, when counts climb quickly.

An overload frame request notifies a node that the message was not processed, as

the receiver was not ready to handle the incoming data. The difference between an

overload frame and an error frame is that the overload frame does not request

retransmission of data and does not increase the error count. The event is "lost."

In a CAN network, any node may send or receive data, though not at the same

time as any other node. This is because all nodes share a serial interface, and therefore all

data is broadcast to each connected node simultaneously. A node may begin to send when

the network is silent, while a priority header determines which message proceeds in the

event two messages are transmit at the same time. This is accomplished through the use

of two types of bits, a dominant (0) and recessive (1). These bits are operated upon with a

digital "AND" operator, so that any node conflicting with a high priority message is able

to immediately determine a collision during the transmission of the arbitration ID and let

the dominant message finish, ensuring no delay in transmission and no requirement to

retransmit the dominant/critical message. A dominant, high-priority message therefore

has a low-value arbitration ID [161.

The CANBus network is unencrypted, so it is accessible to monitor or transmit

onto freely. This enables easy study of existing in-vehicle networks and provides a wealth

of data insight into vehicle operating state.
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1.5 Consumers are Unsatisfied with OBDII Hardware, Diagnostics

There is a market for diagnostic data, but consumer needs are not being met by

present hardware and software solutions. OBDII hardware is constrained by the standards

and must operate within the confines of federally mandated data, while more advanced

fleet management systems are limited primarily to GPS-based tracking with the possible

inclusion of software geofence triggers and require complex installation. Mechanic-style

diagnostic tools are improving and able to show more compelling live and recorded

visualizations of data though are still lacking in actual, value-driven content generation

and "smart" diagnostics, and cost thousands of dollars - on an annual basis. Bluetooth

OBDII interfaces for mobile devices have great supporting apps like Rev and Torque, but

there is a fundamental problem with their communication technology: Bluetooth requires

users to bring their mobile device at all times and prevents the driver from pairing the

phone with a second Bluetooth device on older devices. The potential for "man in the

middle" attacks is also higher than with other network options, and data throughput is

limited [17]. A few platforms are beginning to scratch the surface of using manufacturer-

specific diagnostic data and actuation control, namely OnStar's new Open API and

Ford's OpenXC2. However, these platforms are fundamentally flawed as they remain

closed silos (data remains within the vehicle), APIs are on a per-vehicle/per manufacturer

basis, and mobile device interaction is limited. These silos inhibit interoperation, real-

timing and crowdsourcing which prevents the capture and analysis of truly Big Data.

All of these tools are either for individual vehicle diagnostics or informatics, or

the few web-based systems keep the data reined in - nothing is sharable, everything is

locked into a single platform, and the user is at the whim of the service provider which

ultimately leads to a poor user experience. These devices only make use of the most basic

data from vehicles, ignoring the recent easy access of other sensors and connected

devices (like MEMS accelerometers or GPS receivers), and therefore generate poor data

sets even before being crippled by the lack of data portability.

2http//openxcplatfonn.com/ and https-//deveoper.gm.com/
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The author's undergraduate design thesis ("Design and Validation of a Remote

Telemetry Unit") attempted to address these problems by creating hardware with a direct,

always-on GPRS connection to allow self-reporting and remove user reliance on a

secondary device. However, this system had significant shortcomings due to the

complexity of the software and the lack of user-friendliness which caused problems with

software task scheduling, raised concerns about data security, suffered from poor power

management and had insufficient processing for thick clients where data abstraction

calculations are done onboard. Later versions, immediately following the publication of

the thesis, explored non-OBD parameters on the primary CAN network (not yet tapping

into secondary or tertiary networks) and failed to find value in increased data availability

or actuation possibilities due to limited data and the lack of an easy-to-use API. The

previous development was a step toward self-reporting sensors driving open data, but

between the hardware errors and the lack of a development platform for logged data,

suffered limited utility. The system did not make logging vital vehicle statistics easy and

transparent - it was clear there was a device in the car, which challenged gathering true

use data, and the bugs in the connection routine led to a requirement for constant

supervision. Unlike Facebook, the value of a sharing system for diagnostic data comes

from the "ugly pictures" - as these provide the most compelling insights. None of those

events get captured if the user unplugs the device or if data capture fails due to software

errors.

1.6 End-users Demand Extended Diagnostics

Despite commercial attempts to address data needs, there remains an unmet

demand for an open diagnostic platform. These needs for data emerge from scientists and

fleet managers, a consumer need for improved telematics, and an increasing consumer

desire to utilize data (demonstrated by the significant push to pass Right to Repair, which

seeks the publication human readable diagnostic data and manufacturer-specific

"decoding" parameters) [18].

Fleet management is a growing market. Beyond the obvious truck, taxi, and

police monitoring systems, there is a consumer demand for fleet management.

Salespeople, realtors, and consultants, for example, benefit from fleet tracking with

improved analytics and audit trails to ensure maximum tax deduction for work-related
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travel. Existing services require complex hardware installation and are therefore not

portable and expensive to operate. These devices are also "single function" and the data

are stuck within the application.

Telematics is big business, and aftersales become an increasing source of revenue

for auto manufacturers, illustrated by Verizon's acquisition of Hughes Telematics [19].

The market is growing by leaps and bounds, and nearly 16% of vehicles sold in 2013

have factory-installed telematics systems [201. Here again, these data are siloed and stuck

within a single location. Consumers lease the use of their data from service providers.

Vehicular congestion and concerns over fuel reserves, pollution, and carbon

emissions have emerged as prominent sociopolitical issues. Fuel economy concerns are

more pressing now than ever with increasing fuel prices. Small vehicle sales are

increasing and more economical engine choices, like Ford's EcoBoost, have proven

incredibly successful. The introduction of a family of Prius vehicles, the Nissan Leaf, the

Tesla Model S and the Chevy Volt also indicate a growing demand for highly efficient

vehicles [211. These problems are formidable, but could be addressed more fruitfully with

better information about vehicles and drivers' habits, leading to policies such as vehicle-

specific congestion charging or an odometer-based road tax.

Consumer-facing application sales are also growing rapidly, with the proliferation

of OBDII software sales for mobile devices, such as Torque for Android, and Rev for

iPhone. The data for such applications remains tied to the phone with which the interface

device is paired, preventing crowdsourcing and making real-time data difficult. With the

recent passage of Right to Repair in many states, consumers will continue seeking to

liberate vehicle diagnostic data for consumer use on any and all devices for which they

have access - and removing digital boarders and claiming ownership to data generated

will be the first steps.

1.7 The Cloud is an Enabler: Next-Gen Diagnostics Meet Elastic Computation

Many of the applications sold today do not meet expectations due to the failure to

leverage data across platforms or clunky user experiences. However, the Cloud is an

enabler to connecting computers, sharing across devices, and providing affordable,

scalable computing for complex computation.
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Imagine a user sitting at a desk supporting a monitor, keyboard, and mouse. There

is no desktop computer, just a small box with a WiFi antenna stuck to the back of the

monitor - and yet, the screen looks like a desktop is connected, and the software on

screen reacts as responsively as if a workstation were connected. This computer has no

real processor, but is able to access storage and vast processing power from the Internet.

Now, the user needs to relocate, but she cannot take her monitor with her. She walks to

her meeting and pulls a portable, tablet-sized display out of her bag. She turns on her

tablet, logs in, and the exact same workspace from her monitor appears on the tablet

display. She continues working with the documents she had open on her desktop monitor,

as if she had not left at all.

This service demonstrates the key concepts motivating the Cloud. The Cloud

connects computers together using central storage, and facilitates the use of programs no

one computer could ever hope to run through the use of elastic computing platforms that

scale to meet demand.

Database

Lask top 

T be

Remote Server

Figure 2: Cloud client devices connect to servers located
around the world to perform complex tasks inexpensively

The Cloud is here today, and companies are already enjoying its advantages:

infinitely scalable storage, the ability to ramp up computation speed, and paying only for

the processing power necessary to complete a job. Average consumers also enjoy the

benefits of the Cloud, sharing their files across devices or playing a game or streaming a
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movie. The Cloud, in essence, is a way of having an infinitely large, always-ready IT

department. It is similar to leasing computers, but clients get to enjoy the latest

technology with economies of scale possible only when a single provider purchases the

aggregated computing power necessary for thousands of users at once.

The Cloud has its own language. The client is the end user's device. That device

relies on a service as a means of machine-to-machine (M2M) interaction. The service

facilitates infrastructure, a platform, or software. The infrastructure simply provides

machines - network switches and servers, for client applications. Platforms deliver

operating systems or preconfigured hosting environments. Software delivers a particular

application to the user. Storage handles data delivery between clients. All of these models

provide significant value, and ability to horizontally scale that no other computing setup

can come close to [22] [23].

The Cloud is an enabler for all things connected and all things Big Data, and

thrives in the presence of open standards. It is an exciting technology that helps

consumers realize their dreams of having data and computation power accessible

anywhere and for any purpose at a moment's notice. When using a Cloud server, data

storage and processing capabilities are limitless - and the data are without boundaries,

accessible from any device.

1.8 Internet of Things: Connecting Devices, Once Standards Emerge

The Internet of Things (IoT) is a technology that is somewhat parallel to the

Cloud. The IoT describes a network of connected "smart" devices, leveraging pervasive

computing to improve quality of life and deliver value to consumers. A refrigerator that

talks to a microwave while paired with a smart phone to make a grocery list and plan

dinner is a great example of an IoT network. Cloud computing has made the IoT feasible,

and instrumenting devices by turning them into sensors enables the capture of rich data

and new supporting applications [24].

With the Cloud, MEMS sensing, flash memory, and other recent technological

developments, the timing is right to start deploying new IoT software, hardware, and

services. However, most of the recent advancements in IoT development have been

incremental, failing to succeed due to a lack of standardization in development processes.
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The most intriguing uses for networked devices cannot be realized until developers have

an understanding of user needs and until standards are in place. The IoT cannot be ready

for primetime until the goals of IoT development are well understood and a road to

implementation has been standardized.

1.9 A Combined Approach: Cloud + Car = Digitally Mirrored "Avacars"

An ideal solution to the problems described is an open platform for data

generation and analysis. Developing a platform of hardware and software addresses this

latent demand for vehicle diagnostic data, and democratizes the utilization of these data

in the process. Leveraging the common implementation of CANBus in vehicles today, it

becomes possible to build digital duplicates of vehicles in the cloud, mirroring all key

parameters of these physical vehicles and storing them in near real-time on an elastic

computing platform. Using "plug and forget" hardware, every car may be duplicated as a

"virtual vehicle" in the cloud, a digital mirror of all the key parameters of a physical

vehicle stored in an easily accessible manner that may also be shown as human- and

machine-readable. A vehicle-to-cloud standard would define a means of storing and

accessing vehicle data on an elastic computing platform, standard security practices, a

communications protocol, and canonical hardware for bridging On-Board Diagnostic data

to CloudThink databases, answering the call of collecting and processing data and also

creating a platform for others to build unique and compelling applications.

The automotive avatar created by CloudThink could become an input/output for

various applications, importing real-time and historic data for visualization, analytics, and

even infotainment purposes. Without a platform like CloudThink, basic parameters such

as those required for fuel economy monitoring could not be logged. These cloud mirrors

are all stored on separate virtual drives and are the evolution of the programmatic object,

serving as input and output for applications running on web-enabled devices. This

concept is fundamentally different than the approach taken by others, as it relies upon an

open standard and provides a secure deployment of data that will be accessible from any

mobile device. A depiction of the broad architecture appears in Figure 3.
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Figure 3: Graphic representing the cross-platform, open
standard for digital obCect duplication in the cloud and
resultant applications.

The design report that follows builds upon the author's MIT undergraduate thesis

and addresses the major. pitfalls with a better understanding of consumer needs,

standardization requirements, and how to develop an open platform that is scalable,

interoperable, and above all else, useful.
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2. Design Process, Needs Analysis, and Canonical Use Cases

This section explores the design process, user and developer needs analysis and

canonical data use cases that set the stage for the development of the CloudThink

platform and Avacar mirrors. These needs emerged from analyzing the unmet demand for

diagnostic data in Section 1, intraoffice discussion, collaboration with project partners,

and interviews with third parties about what they would like to see in a platform for

digital object duplication. The author also spoke with potential lead users who had used

existing solutions in a similar field to find out their reactions and solicit feedback about

the platform.

2.1 Identification of Platform Needs: Consumer Insight Meets Engineer Intuition

The introduction set the stage for the CloudThink platform and the Avacar virtual

vehicle. OBDII provides some diagnostic data that can be expanded upon with intelligent

hardware and software solutions, and there is consumer demand to drive the development

of a smarter platform for capturing, storing and serving these data. In analyzing the Field

Intelligence Lab's IoT development needs of data generation, capture, and analytics,

existent technology could meet these needs separately. In-vehicle OBD and MEMs

sensors generate data, GPRS and Bluetooth devices capture data, and existing

visualization applications demonstrate analytics. However, these technologies are

separate and distinct - OBDII cannot read all sensor values, analytics have limited data

sets and are not cross-vehicle. Therefore, seeking to understand why this disconnect

exists would be paramount to extending existing technology into a data mirroring

platform.

Writing user need statements led to several key ideas. Any deployment must be

user-friendly, for the general public to use. Would a grandmother be able to identify if

the device or system had failed, and how might she be able to report or address that

failure with minimal knowledge of the subject? The system would have to be reliable in

recording and reporting, ensuring the accuracy and timeliness of data for applications

making real-time use of data. Concerns about privacy led to a system requirement of

being protective - who can see where a driver has been, and for what purposes? Finally,
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any system would have to have provisions for security, to prevent fraud in cases where

data might be tied to financial resources or other services requiring auditability.

From the perspective of hardware and software developers, a different set of

needs emerged. Some ideas were similar - like resistance to hacking and ease of

installation. Others built upon the user needs, for example, low cost to drive ease of use

and replaceability, or the need for data addressability, leading the requirement for vast

onboard storage. Still other concepts were aimed at creating value through connected

devices, like demanding real-time data access (requiring always-on wireless connectivity)

or the need for a robust, open API to abstract complicated data acquisition. These needs

would drive the creation of a platform for data collection and application development,

facilitating the development of eco-aware, social, infotainment and maintenance

applications, among others.

Thinking about the diagnostic and data capture systems available today, a major

problem is universal access. Without universal accessibility and data standardization, data

must remain where it is generated. An open standard would drive toward universal access

and cross-platform capabilities, inviting hardware designers, software developers, OEMs,

and networks to participate as partners at various stages in development, deployment, and

support.

To ensure data would be used as broadly as possible, a common database was

necessary. A Cloud-centric platform would facilitate easy application development owing

to central database storage and the ability to perform complex analytics server-side.

Leveraging the Cloud, any web-enabled device could be a sensor, and any other web-

enabled device can be used to visualize data and informatics - not just the ones

developed in this document. This free-flow of data across platforms and devices would

drive improved acquisition, analysis, and visualization by removing digital borders and

providing transparent access to key parameters.

These open standards could then lead to real-time applications capable of

leveraging the power of elastic computing. Combining real-time data with crowd sourced

analytics would drive toward the creation of tools for visualization that convert the data

generated from distributed vehicle sensors into insights that would have been previously
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impossible to discern. Crowdsourcing leads the way for more intelligent applications, and

with liberated data, more bright minds solving today's most challenging problems.

The combination of manipulable data and standardization would drive a positive

user experience and deliver value in the form of rich datasets for analysis. However, end

users have typically been wary of data scraping systems, and for good reason. In any

implementation, addressing security and privacy concerns are critical. To provide the best

user experience, users must be allowed to own their own data, opting-in only when they

choose to share, and sharing only the data they wish to disclose with clearly understood

partners.

To keep users happy, any system would have to bypass typical machine-to-

machine (M2M) and machine-machine-cloud (MMC) rollouts and instead favor machine

to cloud to machine (MCM) reporting. This would bypass user reliance on middle

devices and yield richer datasets while improving robustness against man in the middle

attacks. The MCM configuration does fail when it comes to latency for single-user

applications, however, the portability of data and common database benefits outweigh

these concerns. The implementation of a secondary network interface (e.g., Bluetooth in

conjunction with GSM) further ameliorates this problem.

These need statements were disparate, but addressable by a simple solution

summarized in Figure 4. All could be met by the creation of a data-centric application

platform based on digital duplication of physical objects created by always-on black-

boxed hardware. With this system in place, applications and informatics could become

"smart" in that they could begin to infer, rather than assume.
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- Cloud-centric
- Cross-platform
- Secure and protective Every object has a

- Realtime digital avatar!

- Crowdsourced

Figure 4: A distillation of key need statements for digital
vehicle duplication

2.2 Vehicle Miles Traveled Monitoring: A Canonical Problem to Validate

CloudThink's Avacar Mirroring

Any platform development project requires a test case to prove whether it is an

improvement over existing technologies. In the case of CloudThink and Avacar

mirroring, one such example looks at the use of a platform for measuring Vehicle Miles

Traveled (VMT) and extension toward VMT logging for auditability and tax purposes.

This problem is real and an excellent test case to evaluate the efficacy of the platform, as

well as a prime example capable of shaping the design guidelines as it addresses the

primary concerns of reliability, security, ease of use, and ability to drive value.

Exploration of this topic best begins by understanding the need to monitor VMT.

Since their introduction as an import tax during the Hoover administration, gas

taxes have remained a hotly contested topic. In 1932, the United States federal

government was facing the prospect of a severely unbalanced budget. President Hoover

was exploring options for the Revenue Act of 1932 in order to locate income sources to

avoid bankruptcy and foster broader economic growth through infrastructure projects. At

the time, a fuel tax seemed an effective and minimally invasive solution - fuel use was

increasing not only among industry, but also in the consumer sector due to the advent of

modern vehicles. Seizing this opportune moment, many states began to levy their own

fuel taxes (Oregon was first to levy this tax in 1919, while other states and the federal

government took decades to implement due to bureaucratic red tape).
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Despite the gas tax's efficacy in addressing budget shortfalls, some consumers

resisted the idea for decades after its introduction, claiming that these tax revenues did

not directly benefit the purchasers of fuel. These citizens believed instead that fuel tax

revenues went to broader federal programs rather than into maintenance coffers.

Irrespective of this attitude, sociopolitical circumstances ensured the bill was renewed

time and again, despite the negative public sentiment. Finally, during the Eisenhower

administration, the interstate highway system solidified the gas tax's permanent role in

American society by concretely demonstrating a compelling use case: a comprehensive,

federally run road system [25]. State-elected officials saw the benefits of having an

interstate road system, and moreover, saw the benefit of having the federal government

pay for maintenance of this infrastructure project from a single central fund. The sheer

scale of the interstate infrastructure project made federal fuel taxes significantly more

visible targets than state level taxes, but also addressed the big question of tax equality

across state lines - now, paying into the fund would ensure functional roadways for all

drivers. This shift of focus from state to federal tax, along with the rationally presented

use case was effective in making dissent against fuel taxes unattractive. The interstate

system was a champion of garnering support for a federal fuel tax, which ultimately

would contribute to interstate economic growth. Today, state and federal fuel taxes are

one of the primary sources of road infrastructure funding in the United States. Despite

this, many citizens today are wholly unaware of these substantial taxes and the present

funding scheme.

The Congressional Budget Office (CBO) recently projected that the United States

roadworks budget will soon become imbalanced due to overdependence on this tax,

leading to serious budget shortfalls. Since the fuel surcharge is levied on every gallon of

fuel purchased, government programs to subsidize electric and hybrid vehicles, as well as

increasing fuel economy due to more stringent CAFE requirements, has resulted in

diminishing revenue while total passenger miles travelled increase year over year

(Wolfram Alpha Knowledgebase). This problem is not insignificant, as CBO estimates

peg road maintenance revenues at two cents per mile while costs are 10 cents per mile

[26]. For a single driver in the United States traveling an average of 12,000 miles per year

on publicly maintained roads, this shortfall adds up to nearly $1,000 - and there are
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hundreds of millions of drivers in the United States! An alternative, "true use" metric is

needed in the near future - one that ensures equitable financing of road maintenance

based on the actual impact of every vehicle traveling on public roadways. These models

will make use of new technology to factor in load-based wear and other negative

externalities associated with driving.

Facing such a large potential budget deficit, government organizations and

academic institutions have focused efforts on creating a more accurate way of accounting

for true impact. There are many proposed solutions to this problem, some more likely to

be adopted than others. The Business-As-Usual (BAU) solution would accept increasing

travel, decreasing revenue ($10bn/year), an increasing reliance on driving, and a sense of

entitlement as given [27]. This tact would require a shift from public road works to

privatized toll roads, as our current approach is unsustainable financially. It remains to be

seen whether this shift would have significant impact on drivers, but it likely would

unless the institutional overhead for a private road maintenance group is appreciably

lower than government overheads. Another alternative to capture maintenance revenue is

a flat increase in fuel tax. An increased gasoline tax might increase revenues, but would

be regressive (impacting poorer families more, as they spend proportionately a larger

percentage of total income on fuel, and additionally, these families often cannot afford

high-efficiency internal combustion or electric vehicles). A targeted, electric-vehicle

specific tax (like an annual registration tariff) is another, less-regressive option, but faces

the issue of inadvertently stagnating sales of highly efficient vehicles, which already have

difficulty gaining market traction without subsidy. Depending on how policy is written,

this may shift the cost of externalities away from road-maintenance and towards carbon

capture and sequestration, leaving the original problem unaddressed.

A solution monitoring impact at all times is optimal when it comes to addressing

revenue deficiencies in a "pay to use" manner. One "true use" tax is a "vehicle miles

traveled" tax (VMT), which many governments and educated drivers find to be a

reasonable compromise for ensuring revenue needs are met without severely impacting

drivers' quality of life and requiring habit changes. Comprehensive VMT taxation is also

considered to be an excellent proxy for cost of maintenance, as damage tracks directly

with miles travelled for light vehicles, and factors such as vehicle loading can be factored
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in whereas gas taxes do not vary directly with weight [28]. A VMT tax is the next logical

progression for a gas tax setup when most vehicles had nearly identical fuel economy.

Put simply, "the gas tax inadvertently taxes people on their fossil fuel consumption,

incentivizing people to drive eco-friendly vehicles - while a VMT [vehicle miles

traveled] tax, would work to charge a car on its usage" (Ami Cholia, AltTransport).

There are many forms of VMT taxation implementation. Generally, VMT

monitoring systems record miles travelled in a vehicle either using spot-checking (during

fuel fill-ups, oil changes, or annual inspections) or real-time data transfer using a wireless

network. These wireless models afford more options to bring value to consumers using

the same hardware to monitor VMT and to run pay as you go (PAYG) apps (like pay-per-

mile insurance or automated toll collection and parking payment), but open up questions

about privacy, like how to secure data collected through location tracking and how to bill

a user without requiring an interceptable, invariant identifier for each driver. These

PAYG apps would maximize the social value from the investment in VMT measuring

hardware, but without government coercion, would likely not directly result in adoption

of VMT tax programs as a viable tax solution. These devices - thin client, which pass

information directly to a server, or thick client, which does calculation onboard and only

transmits aggregate metrics - can be more involved than a simple distance traveled tax,

accounting for true impact based on vehicle loading, congestion factor, time of day, and

other externalities using complex models and variable rate pricing. To be more equitable

and auditable than current solutions, these same models factor in non-taxable travel, such

as trips out of state or on private land, to allay consumer fears. Technologically, the time

is right to deploy these fair "pay to play" taxes, but people are not yet ready to accept the

devil they don't know due to a lack of technological understanding [29].

The State of Oregon has been a pioneer in seeking to understand VMT technology

and related tax strategy. The state has conducted several, small-scale pilot studies with

the intent of collecting information to better understand data collection methods and

methods for calculating fair use fees. The state studies are evaluated using the following

eight principles: users pay for actual use, the government controls local revenue sources,

the system must be sustainable economically, the system must be transparent in its use,

there should be minimal burden to non-government parties, the system must be
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enforceable, it must support the entire road system in the state, and the system must be

accepted by the general public [30].

The Oregon trials met with success, but were not without obvious problems:

consumers did not like the notion of GPS use, even if point data was never transmitted.

Instead, drivers voiced a strong preference for low-tech versions that use a less-equitable,

fixed per-mile pricing scheme and visual inspections or thick-client, aggregate data

reporting [30].

The Oregon pilot programs answered all the questions within the context

provided, proving that VMT measurement and fee calculation is feasible without causing

pain points for drivers [31] [32]. The trials were a great success, but the consumer

feedback received makes it clear that the road to full, statewide or nationwide deployment

for VMT programs will be long and face challenges as the technology and policy grows

beyond applicability to self-selected drivers. Oregon projects a minimum three-year trial

period, while many other states say it will be five to ten years before even pilot

technology is sufficiently well developed [33]. Only when the hardware is developed can

deployment begin, though education programs could certainly begin sooner.

The study provides several valuable takeaways. First, understanding that third-

party partners and PAYG applications are core to VMT policy adoption means that these

applications can be used to accelerate this otherwise slow process. Building an open

hardware platform, and choosing what to share, is an ideal solution for protecting

consumer privacy while rolling out a system that consumers will actually want to install

[31]. The study also proves that educated consumers will grow quickly into accepting

VMT tax as an alternative to the fuel tax.

The studies did omit information that would have been valuable, such as

consumer reaction and feedback (interview based or otherwise) to various rollout

methodologies, as well as non-volunteer/compulsory survey results, results when

consumers were not given an example VMT tax budget, and the role of information in

driving consumer choices and resultant feedback (e.g. does the driver see VMT fees

levied in real-time, or only at the end of the month?). The study also raises further

questions, such as how to handle interstate VMT monitoring and revenue sharing, and the

issue of privacy versus auditability (recently, Oregon proposed an interesting solution
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using a thick client sending aggregate usage statistics with a usage identifier, and a

second, encrypted message containing the regional splits driven by the vehicle operator to

remove identifiable driver data while still allowing for proper apportioning) [29]. Not

discussed at length, but equally important, is the issue of anti-spoofing to ensure drivers

cannot easily evade the tax so that drivers can rest assured their neighbors are also paying

taxes. Here, an open platform can ameliorate these big pitfalls and allow data

interoperability across physical and digital boundaries (state lines and various third party

monitoring programs).

The issue of a central database populated with driver information was a topic of

contention, especially in the context of sharing between government organizations or

even private entities such as bill collectors. A related Texas VMT proposal suggests that

stating a clearly defined goal, data retention guidelines, and allowing data transparency

for users alone, may be enough to quell fears during limited deployment. Along with

comparison to current technologies (OnStar, etc.), privacy and data collection may be a

non-issue - or could backfire terribly.

While VMT policy may face challenges, these challenges are not insurmountable

and deployment is likely. Therefore, VMT measurement technology will have to be

developed and tested. This is an excellent use case for CloudThink and Avacar mirroring,

as it will test the hardware's ability to capture data, the platform's usability, and

challenge developers to create secure and private applications.

2.3 VMT Measurement Tests CloudThink on Accuracy, Reliability, Privacy, and

Security

VMT measurement has been deployed in the United States with varying degrees

of success, but big questions remain unanswered. The best way to address these concerns

and ensure that any given system is extensible and future-proof is to build within the

framework of an open standard, as the VMT development needs suggest. Further, digital

mirroring directly supports auditability and extension to PAYG applications, meaning

this test case is a good launch pad for future application development. The CloudThink

platform, if implemented properly, would provide a multi-state, auditable, and private

solution. The VMT monitoring problem is a challenge, but an excellent test case for a
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mirroring platform due to the volume of data, complex computation, and security and

privacy concerns that must be addressed. It also provides a "real" use case to convince

consumers of the platform's value, and addresses the challenging problem of measuring

distance using On-Board Diagnostic data as a primary source.

The use of VMT applications as a test configuration for cloud mirroring provides

design challenges that will help to test and refine the development of the embedded

hardware and software. VMT technology can be described as location aware, location

agnostic, or a hybrid approach. Location aware VMT technology includes GPS, cellular

localization, internal navigation, and other similar technologies, whereas location

agnostic reporting relies upon dashboard visual inspection, wheel odometers, fixed fees,

and On-Board diagnostics. Hybrid approaches combine these tactics, but can add a layer

of complexity in that location data may be utilized in processing but never transmitted, or

may be transmitted but never used as the basis for calculation. Figures 5 and 6, below,

compare these technologies.

Technology GPS Cellular Localization Inertial Navigation

Accuracy High (<3.3m) Medium (<300m) Very high early/very
low after time

Privacy (response) Misunderstood. Misunderstood. Some Publically unknown
(note: all of these Believed to track people have excessive technology - could go
technologies report people, but GPS is faith in security of cell either way.
location, but the receive-only phones, while others
public understanding are exceptionally
and response are very concerned.
different)

High Medium Very High

Can be determined (real time)

Loses signal Integrated with Processor intensive
frequently existing wireless Location awareness

module can help later

Figure 5: Comparison of location-cognizant measurement
techniques for vehicle miles traveled
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Questionable High

No location recorded or transmitted.

Very high early/very N/A
low after time

Very Low High Low Very Low
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Figure 6: Comparison of location-agnostic measurement
technologies for vehicle miles traveled

A hybrid approach in many cases melds the benefits of location based with non-

location based monitoring, in that it can correct for out of billable zone travel (private

properly) and keep data private by processing locally. The downsides to this model are

complexity, though as embedded processor speeds increase and flash memory becomes

less expensive these barriers to deployment will diminish.

One example of a hybrid measurement approach is the merging of diagnostic

(OBD) and location (GPS) data. OBD would provide distance metrics, perhaps combined

with GPS to ensure validity, and the precise location could be used in an onboard process

to identify whether the region was billable. In a thin client model, these data would be

passed to a server as raw data, while thick client models would pass data only when GPS

indicates that the region is taxable, and might provide aggregated distance travelled only

when crossing between billing zone boundaries.

As an extension to this VMT monitoring, and another use case, CloudThink and

the Avacar were designed with the consideration of monitoring fuel use in mind. This

extended the platform design "stress tests" to include habit monitoring and methods for

providing feedback to users.
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2.3.1 Fuel is a Big Issue: Extending VMT Monitoring to Test and Push Fuel

Economy Improvements

Extending VMT to capture fuel use provides a more complex, more impactful test

scenario that is easily relatable. Fuel use is a big issue- in 2009, transportation was

responsible for 29% of U.S. energy use, while passenger cars account for 66% of this

number (this breakdown is visualized in Figure 7), leaving 19% of energy use tied up in

consumer vehicles. Most of this energy comes from C02-rich gasoline.

Energy use and transportation in the US

Passenger cars

El Other transportation

9 Industry, buildings, etc.

10

Improvements not made in
transportation

2007 2009

- USA usage: 314 MMT of CO 2 / 2.6 trillion miles SOURCE Data from EI EPA, NHTSA

- 0.1 MPG improvement saves 11 MMT annually

Figure 7: Energy in the United States by sector in 2007 and 2009, based
off of EIA and EPA data. For transportation in particular, much of the

energy use is tied to gasoline use.

Looking at the same data, consumer vehicles released 314 million metric tons of

CO 2 over 2.6 trillion miles in 2004, with an average fuel consumption of 19.6 MPG.

Since gasoline produces about 19 pounds of CO 2 per gallon combusted, a mere 0.1 MPG

increase would save almost 100 pounds of CO 2 per vehicle per year, or over 11 million

metric tons of CO 2 annually if the changes were applied across the entire US consumer

fleet [34].

Though energy use increased between 2007 and 2009, the relative percentage for

transport-related energy use is higher, indicating a proportionate lag of improvements in

that sector (data from 2003 and farther back corroborate this notion). Fuel use is an

important factor in reducing greenhouse gas emissions and otherwise preserving the
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environment. This section explores CAFE (Corporate Average Fuel Economy) legislation

suggested targets for fuel use within the United States between present day and 2035, as a

means of identifying the monumental problem with fuel consumption in the United States

and illustrating the need for consumption monitoring and behavior-changing applications

that would further test a digital mirroring platform like CloudThink.

2.3.1.1 CAFE Goals: Can Better Data Make a Bigger Impact?

CAFE stands for Corporate Average Fuel Economy, the sales-weighted average

fuel economy over a manufacturer's entire portfolio. Sales weighting means that a

manufacturer's CAFE number, used as a comparison against CAFE target fuel economy,

is actually fairly flexible from manufacturer to manufacturer.

CAFE legislation is not a new idea, and has been implemented with great success

in the past. It was drafted in 1975 as a response to the Arab Oil Embargo as a set of

incentives and potential fines that, with low latency, took effect and had great impact.

With a few tweaks over the years, it effectively brought the fleet average for new cars

sold within the United States from 18 MPG in 1978 to 27.5 MPG by 1985. Since CAFE

tends to be driven by fuel prices, progress leveled off between 1985 and present day, and

modem fuel economy had not improved appreciably between 1985 and 2004 [351 [36].

However, the changes from 1974-2004 demonstrated a remarkable impact, as the whole-

fleet EPA-rated average economy improved 78% and this resulted in a 33% reduction in

CO 2 emissions per mile [37]. The reason for stagnation between 1985 and 2004 was the

consumer push for safety, luxury, and power; all efficiency gains were negated by

increases in weight and horsepower [38].

As fuel prices began to climb again recently, CAFE has once more become an

attractive piece of legislation and was revamped and redeployed. The US target is 54.5

MPG by 2025, starting from 2011 and moving up in 5% or 3.5% increments annually for

cars and trucks respectively. This figure is, as with most CAFE calculations, not entirely

representative of on-the-road improvement. The 54.5MPG figure comes from the US

EPA's 2025 CO 2 target of 163 grams/mile by 2025 and the requisite equivalent fuel

economy, while the "true" target is 49.6 MPG because it is a hybrid of EPA and

NHTSA's desires for specific fuel and CO 2 targets. This value takes into consideration
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the EPA CO 2 standard as well as EPA-approved credits provided to manufacturers for

exceeding targets or producing "game changing" technology, like plug-in electric

vehicles [39] [40]. Therefore, this number is not an accurate representation of what fuel

economy the vehicle might get in use, as a car meeting CAFE's 2025 target might only

have a 36MPG combined (city/highway) EPA window sticker [39]. This is because

CAFE testing is done on a dynamometer, not the road, and uses the original EPA drive

cycle for fuel use evaluation.

Today

Cars- 30.2
SUVs- 24.1

SOURCE: Targets from NHTSA, Edmunds

2025

"Combined" -
2016 54.5

"Combined" -
35.5

- From EPA's 2025 CO 2 target
163 g/mile

* "True" target 49.6 MPG due
to credits

* No relation to "window
sticker" FE

2050

Cars- 60.4
SUVs- 48.2

Figure 8: CAFE targets from present day until 2050. Note
that present day economy values use window sticker
economy, while CAFE uses an older EPA test.

The actual calculation of CAFE averages is accomplished using a harmonic

average, the reciprocal of the average of the reciprocal values for fuel economy. This

captures the fuel economy realized by driving each vehicle in the fleet for the same

number of miles annually, whereas the arithmetic mean captures the fuel economy

driving each car using the same amount of gas [41].

CAFE is fundamentally flawed because it relies on imaginary vehicle in

imaginary situations. An open platform providing real-time, crowd-sourced diagnostic
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data could provide far better metrics for fuel use and drive significant improvement

relative to today's policy.

2.3.2 Impact of Real-World Data on Fleet Average Fuel Economy

CAFE is a good idea, but needs improvement before it can be effective. CAFE

makes use of the now-deprecated EPA drive cycle while almost all other organizations

concerned with fuel economy have revised their standard drive cycles to reflect increases

in speed and the proliferation of accessory usage. The argument in favor of retaining the

old EPA drive cycle is the resultant comparability of fuel economy figures over time, and

the argument that a percentage improvement with one particular cycle is still that same

percentage improvement, but it is deceptive to report such artificially constructed fuel

economies. This is especially true when reporting values to consumers who are unable to

fully comprehend the impact of CAFE and what it means for ROI when purchasing a

new, more fuel-efficient vehicle. Beyond updating the drive cycle, it is more important

than ever to have an accurate measure of fuel economy in alternative fuel vehicles (for

example, when the government calculates MPGge, it is unclear what the power source is

or if it is corrected for line losses or plant inefficiency). These new fuels and update

vehicle use cases must be corrected for, and an open data platform allows for this with

present technology.

The outlook for meeting CAFE targets at present is relatively bleak. While it is

not easy to address the political shortcomings and consumer desire behind these policy

developments, a cloud-based monitoring system would avoid loopholes in calculation by

providing better, real-world data composed of real information from the deployed US

fleet. For example, it would be possible to identify the type of fuel a vehicle is using -

and eliminate unjust alternative fuel credits - or examine a typical use case rather than a

federal drive cycle. With cloud mirroring, legislators and manufacturers could examine

the true efficacy of policy and restructure legislation to ensure measurable and

meaningful impact. Loopholes could be tightened - for example, by eliminating the SUV

exemption based on typical routes driven - and fines cold be levied for manufacturers

more equitably. As an added value, manufacturers could receive better data as to the use

case of their vehicles and optimize their development to better meet these needs in the
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context of reducing emissions and fuel use, while government agencies could gather

anonymized data representing the true use case of the United States vehicle fleet,

weighted by miles driven and cumulative total of negative externalities. These data would

drive the creation of more representative drive-cycles, and perhaps most importantly,

these data could have an impact on consumers.

Consumer desire to drive their bigger, faster vehicles more aggressively causes

the true fuel use to be even worse than CAFE and targets might suggest, but a mirroring

system and application platform could partially address this problem. In addition to

proving the economic complications of SUV ownership, data could be used to generate

compelling representations of consumption that could cause a shift away from 0% EFRC.

Social applications could drive competition to improve economy, and a slew of

aggregated data could be used to tweak the big lever arm that is driver behavior. Some

devices today - like the Automatic app for iPhone and Android3 - attempt to do this using

accelerometer, but with the richer, real-time, and crowd-sourceable dataset afforded by a

digital duplication scheme, it would become possible to drive more consumer behavior

change and provide informatics based on hard data rather than gut feeling. With adequate

feedback and a compelling application model (perhaps gamificiation of driving habits),

CAFE targets - even the more critical targets afforded by improved measurement

techniques - would be far more achievable.

Cars are getting ever more efficient, but fuel economy numbers do not

reflect these efficiency improvements. Where is all this saved energy being lost?

One way of quantifying potential improvements is the Emphasis on Reducing

Fuel Consumption (ERFC), which describes the degree to which improvements are

directed toward reducing fuel consumption relative to other factors. ERFC is calculated

as in Equation 1.

Equation 1:

3
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ERFC

Fuel consumption reduction realized on road

Fuel consumption reduction possible with constant performance and size

and

FC previous-FCrealized

FCprevious-FCpotentia[

ERFC will return a value between 0 and 1, corresponding to a 0% or 100%

emphasis on technological improvements being directed toward reducing fuel

consumption relative to other aspects of the vehicle (e.g. improved comfort, safety, or

convenience [size]). Put simply, ERFC is the relative importance of fuel economy when

compared with performance and luxury. In some respects, this is best modeled as a

simple vector math problem. Assume there exist a series of vectors created from

component vectors parallel or perpendicular to the "movement" axis or forward direction.

These perpendicular vector components point toward "luxury," "power," or, generally,

"distraction."

One vector exists entirely in the direction of the movement component. The entire

magnitude of this vector forces fuel consumption lower. Another vector exists only in the

direction of the "distraction" component, or in the direction of technological

improvements that do not directly improve fuel economy. This vector never helps

improve economy and instead is focused solely on more palpable user experience, like

improving acceleration time. An ERFC of 100% is the former case, while the 0% case is

the latter. Combinations of these vectors determine the ERFC and how much an

improvement vector contributes to actually moving a vehicle versus simply making it

nicer to sit in or drive quickly. Typically, consumers prefer 0% ERFC, while governing

bodies prefer 100%.

Supporting the assertion that historical ERFC is near-0%, observe that from 1981

to 2003, fuel economy increased 1%, weight increased 24%, horsepower nearly doubled

(93% improvement), and acceleration improved by 29%. Had ERFC instead been 100%,

average fuel economy for the entire US fleet would be up 20% between 1985 and 2001
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(and presumably better since then, as new technologies such as transmissions with more

gearing options and direct injection have since come on-line) [43]. Comparing vehicles

within a single class, Knittel, in his AER paper, asserts that improvements in economy

could have been 60% instead of 15% realized [351.

If the past 20 years are any indication, US fuel economy would remain constant

due to the 0% ERFC consumer preference. That means all the engine improvements go

toward offsetting louder stereos, faster acceleration, and carrying around lots of road

noise deadening equipment. With a real-time feedback system, consumers may realize

the harm ERFC 0% is causing - and take corrective action.

One of the single biggest challenges to CAFE's success is the introduction of

additional trucks into the US fleet. Unfortunately, CAFE actively encourages the

development and sales of larger vehicles. This problem is often referred to as the "SUV

loophole."

CAFE was first implemented at a time when not all automakers offered a full line

of vehicles. Full line manufacturers rebelled against the standard, saying CAFE was

easier to meet for new automakers that did not yet produce trucks. Thus, the standard was

revised, and tiers were put in place. The physical footprint of the vehicle, rather than the

intended use or even weight defined these tiers. Larger cars were allowed to achieve

lower average fuel economy based on the assumption that larger vehicles had more utility

and would be used only if necessary [44]. Auto manufacturers saw an easy option to

lower the CAFE target they would have to meet and began to produce larger (and

therefore heavier) vehicles [38].

That same incentive exists today, as cars must improve fuel economy 5% per year

while trucks are only required to meet a target of 3.5%. With a cloud-based informatics

platform, it becomes possible to show users the trust cost to operate an SUV and allow

market forces to drive improved fuel economy.

There are other loopholes that increase the likelihood of meeting CAFE targets as

well. Alternative fuels and "flex fuel" E85 vehicles are of particular concern. That is

because the standard only counts the "perceived energy content," or the fraction of

gasoline content as energetic for this fuel, so only 15% of the fuel is considered to be

doing work. Thus, fuel economy when running on ethanol blends can be multiplied by a
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factor of 6.66 (or 1/15%) for CAFE calculation purposes [39]. In an example case, a

vehicle gets 28 MPG on gasoline and 25 MPG on E85. The CAFE fuel economy

becomes (28 + (6.67)*25)/2=97.4 MPG - even if the car never burns the fuel! Since the

alternative-fuel fuel-economy is averaged with the gasoline fuel economy, E85 vehicles

have artificially high economies when recorded for CAFE [451 [39] [37]. This

incentivizes the creation of mild-dual-fuel vehicles, even if they never run the secondary

fuel.

Other stumbling blocks are MPGge calculations, calculations that are still

evolving. Combined with credits for mild hybridization and trivialities such as LED

lighting, credits appear to be too easy to come by and should be eliminated or

significantly revamped [40]. [45] [39] These credits in particular make it easy to continue

producing gas-guzzling SUVs, putting a damper on otherwise significant progress. While

these credits pose a significant threat to achieving the target goals, one of the biggest

factors in CAFE's efficacy and one yet to be discussed is consumer buying habits.

In both cases, the availability of true-use data is useful for the consumer (and any

possible next-generation CAFE programs) as it becomes possible to measure the true

impact of a technology and figure out a per-vehicle fuel consumption. This sort of data

would allow greatly improved metrics for efficiency and consumption - for example,

weighting a sports car that gets poor fuel economy but is rarely driven significantly less

than a daily-driven SUV receiving similar economy. Manufacturers could even optimize

their development and re-tune components to improve efficiency remotely. This would be

a great improvement over the dynamometer-test based CAFE metrics today.

43



3. Development of CloudThink: Hardware Evolution Leading Standardization

In the Field Intelligence Laboratory, projects begin with a complete needs-

analysis and use the results to attempt a solution before completing a prior art search.

Reinventing the wheel is an excellent exercise, and it allows for unbiased thinking and

the viewing of insights otherwise impossible to discern. The same publications will be

available after a best-faith effort to develop independently, so taking the time to struggle

with problems firsthand is a worthwhile experience.

This tact provides a richer understanding of the depth of the problems faced, and

the ability to derive a framework to meet specific wants and needs goals with IoT

technology. While it may seem incongruous with a push toward standardization, the

reality is that understanding needs leads to understanding what, exactly, standards should

define. The following section describes several guiding principles for designing the

Avacar creation device, the CANPuter.

3.1 Guiding Principles

To allow successful deployment of the next generation of self-reporting devices,

developers must understand how designing within an interoperable framework reduces

duplicated effort, extensibility reduces development time by leveraging existing

technologies, and convergence utilizes parallel advancements in Cloud and mobile

computing to streamline connectivity and drive a positive user experience.

Interoperability - until an interoperable framework is in place, efforts to develop

compelling hardware, informatics and applications will be wrought with

duplicated efforts.

Extensibility - utilization of existing infrastructure in which investment has been

high (for example RFID) for innovative new applications (such as sensing)

reduces development time, cost, and complexity

44

I -____________



Convergence - leveraging parallel advancements in cloud and mobile computing

helps streamline human-device and device-device connectivity by creating a

platform for analytics and visualization that performs seanlessly and across

digital boundaries

These topics provide a framework for defining methods to generate, capture, and

analyze data. These topics are separate, but not freestanding. Without data generation,

there would be nothing to analyze; with unreliable data capture, any conclusions could

not be trusted reliably, and without analytics, there would be no easy way of drawing

conclusions afforded us by these new data. These areas work in concert to provide a

complete, end-to-end solution for IoT hardware and software.

Though not the focus of this thesis directly, the author believes there are several

key concepts that may help ease IoT development pains and lead to smooth deployment

of technology. These beliefs strongly sculpted the author's approach to developing

CloudThink as a platform, and guided the vision for digital object mirrors and its drive

toward an open standard. Presently, 1oT development falls flat due to a series of barriers

to rollout. To ameliorate this:

" Open standards support the larger vision of the Internet of Things, and will drive

growth and incubate new technologies

" Standards pay off with improved user experience, making the effort worthwhile

" The IoT must serve average people and be usable without requiring specialized

knowledge or exceptional skill

" Privacy and security concerns must be addressed sooner rather than later, as they

will not go away

" Transparent devices ease data capture and have a butterfly effect when it comes to

increasing the volume and reliability of data captured

The first and boldest point contends that open standards are the future. This is

sure to be the case. Open standards cut across all aspects of the Internet of Things, from

hardware interfaces to communication protocols to privacy and even data storage. With

open standards, it becomes possible to develop in an interoperable manner, and the freely

available specification allows developers from all backgrounds easy entry. The
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standardization of data storage allows users to maintain portability of data, creating the

opportunity to cross digital borders using freely manipulable data.

The publication of an open standard invites developers to the table, keeping things

membership-free and well documented to ensure wide usability. This allows innovative

thinkers to create compelling value propositions for consumers and helps get more eyes

to pour over rich data sets with hard to discern trends. Neutral accessibility allows hacker

culture to participate openly, and open APIs and free data access supports development of

analytics, informatics, and visualization - all of which must be present prior to exploring

user experience.

This standardization drives rapid adoption and drives costs lower. Standards are

expensive, but collaborative development lends itself to lower cost for hardware and

software that is interoperable, understood, and customizable. For those interested in data

and not hardware development, these lowered barriers to entry are a massive windfall.

For those with a focus on hardware, a more compelling app ecosystem means more

potential sales, even if margins are smaller.

Standards take time and money to write, but this initial investment is repaid when

supporting solutions work out of the box. This positive user experience drives further

adoption of the standard, increasing sales of related software, hardware, and services. The

process of writing standards fosters better understanding of user needs that have been

addressed and those yet to be met, and the process lends itself to the creation of

composite metrics such as measures for success for Internet of Things utilization.

Standards also allow a surprising amount of control over user experience, even if

they do not directly address the topic. This is especially true for standards that are hard to

protect. Reverse engineering is a reality, and it should be viewed as positive that people

want to follow this standard as it drives utilization of related products and services.

Fighting against openness and requiring competitors to reverse engineer a standard often

introduces bugs and creates a clumsy user experience, which reflects poorly upon the

standard that was reverse engineered. A great example of this is open-source image

editors that claim to open Photoshop files. Any freeze or crash reflects as poorly upon

Adobe as it does the creator of the open-source program, and less people will chose to

use the file format due to interoperability concerns. The bottom line is, open standards
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liberate data, and liberated data is boundless. GS1 has shown this to be true with their

development of Electronic Product Codes, e-commerce and data synchronization

services. The proliferation of services such as Google Fusion Tables serves to further

illustrate the demand and utility for interoperble data.

In IoT development today, designers forget that the loT is about people [46].

People can provide data, people use data, and people support the infrastructure. Too

often, devices and standards are designed for the sake of the technology rather than for

the stakeholders. Machine to machine is necessary, but so is thinking about how M2M

can be made to serve and improve lives rather than simply create work. In a similar vein,

data generated must be constantly examined and refined to ensure that it is usable beyond

the originally designed application. Millions of data points are meaningless if they are not

easy to visualize and manipulate. Standardization helps bring the focus back to the

people by providing clearer sets of rules and regulations for IoT hardware, software, and

APIs. A well-thought-out standard can ensure the success of IoT technology simply by

ensuring a positive user and developer experience.

Security and privacy concerns are core issues to IoT technology. Users should

own the data they generate, and should be encouraged, but not required, to opt-in to

sharing programs. This may be accomplished with rewards programs or simply asking

the user. Security is paramount - SSL encryption is a good start but not a complete

solution to protecting sensitive information in transit. The key here is to solicit user input.

Some users want to share everything, and other users will want a physical key switch to

enable data sharing. These users are potential customers, so not understanding their wants

and needs is asking for hardware not to be adopted. Importantly, policies must be clear,

honest, and consumer leaning. Here again, standardization can eliminate duplicated

efforts and provide reassurance that their concerns have been addressed directly by a

standardization group.

The last point concerns transparency of design. In early sentiment testing

(conducted by asking users to try the author's hardware, as described in later sections), it

became evident that end users did not care to deal directly with the device if it required

much intervention. The NEST thermostat is a good example of a device that users feel

comfortable with. It is no more complex to use than a typical programmable thermostat,
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more closely mirroring the decades-old dial type thermostats. Yet, users love the

experience - because it just works, and because they do not have to think about their

interactions with the device. This approach drives the generation of big data. A set and

forget device will continue reporting non-invasively. Devices that require user

intervention or remind the user of their presence are likely to be deemed bothersome and

unplugged.

These rules for IoT development shaped the design process for the CloudThink

project and the thoughts behind the Avacar platform.

3.2 Why Redesign

The author's undergraduate thesis, "Design, Development, and Validation of a

Remotely Reconfigurable Vehicle Telemetry System for Consumer and Government

Applications" describes the creation of a Real-Time Operating System (RTOS)-based

diagnostic tool and supporting applications which were hard-coded, rather than built on a

common or extensible platform. This system was based on the LPC2129 ARM7-TDMI

processor, a very capable architecture - but the software was not optimized and the user

experience was poor. The scheduler was timed poorly and froze, the device was slow to

log, and the code suffered from severe memory leaks that caused hard to reproduce

problems. The software toolchain was complex and difficult to develop for.

Moving to an easier to develop for model was in the best interest of creating a

robust application platform and canonical hardware, allowing developers to focus on their

core competencies. Arduino systems enjoyed much success, and the barriers to entry

were low from a prototyping perspective. OBDII interface solutions existed in the form

of ELM327 modules as well as the "SKPang CANBus shield," which integrated an SD

memory card along with provisions for connecting GPS receivers and LCD displays. This

configuration could provide excellent vehicle data, and the analog input ports and

secondary serial ports were free to be used with accelerometers and cellular interface

devices.

Early development for the hardware revolved around the SKPang module paired

with an Arduino Duemilanove, followed by an Arduino Uno, and ultimately an Arduino
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MEGA 2560.4 These platform shifts occurred after running into USB driver limitations

and subsequent I/O limitation as pins were dedicated to accessories like memory cards,

leaving few available for expansion. The transition between the Uno and MEGA form-

factor was difficult as it required rewriting the SPI library to properly address the CAN

transceiver, and this complication delayed the development for several days prior to the

realization that a pin redefinition in software could solve this problem.

Working from software examples provided by SKPang, the author developed a

serially operated (sequential execution) program.5 This type of program looped as quickly

as possible to capture data, but the timing was indeterminate and, while it was typically

quick to log, it would occasionally lag and miss data despite the integration of multiple

prioritized interrupt routines. The utilization of interrupt routines enabled more robust

data capture, but again, the logging was unreliable. A restructure of the interrupt priorities

improved reliability of capture and logging.

Early testing results were positive, and the system logged OBD and GPS data

quickly and reliably to the onboard memory card. Notably missing were the data afforded

by an accelerometer and cellular connectivity, though the integration of an LCD made

software development and debugging drastically simpler and was deemed an ideal feature

for future revisions.

http://www.skpang.co.uk/catalog/arduino-canbus-shield-with-usd-card-holder-p-706.html,
http://www.arduino.cc/

5 http://code.google.com/p/skpang/
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Figure 9: This flowchart represents the time-indeterminate
Arduino OBD logger capture / recording model

The next step to address the concern of limited data sources was to develop a

custom PCB based around the Arduino test hardware incorporating additional sensors

and communication methods. This board added features like battery backup and cellular

communication and shared the same ATmega2560 processor as the Arduino MEGA. This

allowed the use of the Arduino compiler and Arduino software libraries, as well as

inexpensive USB bootloader hardware and free software. The availability of additional

UART channels led to the reintegration of a Roving Networks RN41 Bluetooth module

to allow for M2M communications when cellular coverage was not available. A second

ATmega processor provided USB logic translation to allow debug and programming

without special cables, as was the case in the Uno and MEGA prototypes. The SM5100B

cellular module was chosen for cellular communication due in part to its free TCP/IP

stack and low cost, coming in at nearly one third the price of competitive Telit modules,
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even when paired with a low-cost GPS receiver like the EM-406. In testing, this module

proved to have a poorly written stack with significant bugs in reconnection routines, so

the future development reverted to Telit hardware.

Figure 10: "Version 4" Arduino board, featuring Arduino
MEGA processor, microSD memory, onboard USB,
SM5100B cellular module, RN41 Bluetooth transceiver and
pin headers to interface with external LCD and GPS
modules. The joystick onboard allowed the user to select a
program to load, speeding development and debug time.

The "Version 4" PCB as designed was slightly larger than the previous ARM7

revision, but only required two-layer construction and incorporated significantly more

functionality (dual wireless networks and an integral USB transceiver) than the previous

boards. The battery backup system worked well to ensure constant power, and the

Arduino Processor worked as expected, integrating seamlessly with the Arduino compiler

and consequently becoming appreciably easier to program and deploy software updates.

Despite this ease of use, the hardware focus led to withering software development and a

buggy implementation of logging software. With the software losing focus, there was no

scheduler system and data reliability suffered. Further, the new hardware cost as much as

the previous ARM7 hardware due to integration of non-essential features.

Another unexpected second-order effect was that making it easy to program over

USB with no special tools led to novice developers wanting to run software that had not

6 https://www.sparkfun.com/roducts/9533
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been thoroughly tested. Several drivers testing the hardware "tweaked" features and then

complained about poor performance of the device. A slight complication in compiler

requirements would raise barriers to entryway sufficiently much that more experienced,

"prequalified" software developers could bring about an improved user experience

(indeed, far fewer users asked to view the C code running the next version of the

hardware). Ultimately, the Arduino model was a move away from the target, though it

did provide many opportunities for learning to be integrated into later hardware revisions.

These lessons included the realization that parallelization of tasks is key to

reliable data logging, that unreliable bootloaders breed frustration and reduce incentive to

develop, and that users want to become involved - potentially to disastrous result. This

project also led to better understanding of parts sourcing and supply chain issues.

Initially, the author believed the open source nature of the Arduino hardware would lead

to low-cost derivative hardware. This was opposite the reality, as Arduino's surge in

popularity .led to supply chain shortages and ultimately increased lead times and

component sale prices. The SM5100B's failures also indicated that paying a premium for

well-engineered parts is a worthwhile spend of money, saving untold hours when hard to

replicate bugs and poor documentation lead to stalled feature development.

3.3 Failures Lead to Better Understanding: Updated Hardware Goals

The deployment of the Arduino revision was short-lived due to the prevalence of

bugs and failure to reduce cost. It was therefore time to lock down the hardware with a

needs exploration and through studying the lessons learned by the production of the four

previous hardware iterations. This first required asking a few questions, namely "who

will use this," "what, exactly is being developed," and "how can the hardware be future

proofed, to work with new vehicles and an ever-changing platform?"

The first question is poignant, as application developers differ greatly from

embedded developers, the second defines the scope of the development, and the third

defines architecture and platform roadmaps. The answers are difficult, but distil down to:

the hardware must be designed for embedded engineers supporting application

developers; the solution developed is a bridge between OBDII, other sensors, and the

cloud, and; the future proofing must be thoughtful and designed-in from the start.
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First and foremost, the hardware (now termed the "CANPuter") would have to

provide universal access to vehicle data, bringing engine and transmission data from the

diagnostic port straight to a secure database. To implement this functionality is non-

trivial, and historically has prevented application builders from making use of vehicle

diagnostic data. By making access to this data transparent, it would become easier to

build applications focusing on innovation rather than security and data capture.

This vision required more than simplification of access to conventional diagnostic

data, but also the extension to manufacturer-specific diagnostic and configuration data

and CANBus physical layer access. The hardware and embedded software would need to

be capable of being open sourced (no highly specialized license requirements or

significant fees involved) and functional in providing data capture for a range of

applications through the availability of near-real-time communications and onboard data

storage. The hardware would have to operate as a thin client (transmitting all data

captured), but have sufficient processing available to operate as a thick client (data

calculation and aggregation onboard).

The hardware was designed to maximize volume of data captured, which meant a

wide install base would be crucial. Therefore, cost would have to be minimized through

value-driven design, where each feature is evaluated thoroughly through user surveys and

only designed-in if deemed to be a net value add for users and developers. This is

different from other low-cost options that focus on optimizing for single applications -

instead, this design methodology ensured the broadest possible range of applications

would be supported by CloudThink's single hardware platform.

The basic functionality requirements dictated OBDII connectivity and cellular

Internet access, though neither of these requirements was specific enough to guide

implementation. To reduce cost, the author decided to support only the CANBus

networks found in newer vehicles. To ensure future compatibility, the board would have

to support all OBDII CANBus variants out of the box (meaning 250 and 500kbps, along

with 11-bit standard and 29-bit extended identifiers). The specification for CAN

communication would require support for SAE J1979 modes 1, 3, 4, and 9, to allow the

reading of live and frozen PIDs, and the reading and resetting of trouble lights, though

support of additional modes would be preferred. This would cover all vehicles model
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year 2008 and newer, and many older vehicles supported CAN prior to legislation

dictating the requirement. Examining data generation needs and typical calculations (e.g.

fuel economy, which requires three parameters) the end result was a target goal of 5

PIDs/second read from the Engine Control Unit (ECU) and Transmission Control

Module (TCM).

Developers would only be able to realize the maximum potential for diagnostic

networks with support for secondary networks like comfort and convenience of

infotainment, either directly or by way of the gateway device. Therefore, support for

manufacturer-specific diagnostic data on the HS-CAN network as well as proprietary

CANBus (single and dual wire) networks was a high priority goal and ultimately deemed

necessary to design but not populate. This would allow users or distributers who value

the feature to purchase an additional, installable module and greatly enhance their data

generation capacity.

Wireless connectivity was a necessary goal, and Bluetooth and WiFi devices both

required separate intermediate devices leading to the requirement for cellular

communication. Bluetooth and WiFi had advantages in data throughout and latency so to

ensure the cellular connection did not lag far behind, a target was set for a 10-second or

better average communication time between sensing a value from a node and reaching

the target server for storage and/or processing. This latency demand and the volume of

data generated dictated the modem specifications: a "2.5G" network could provide

sufficient bandwidth and coverage to allow for this latency in all but the most extreme

cases. Where network coverage was not available, buffered storage would offer an

opportunity to log locally and upload when connectivity resumes - a worst-case scenario

led to a target of one month of OBDII, GPS, and accelerometer driving data logged prior

to hitting memory capacity. A removable and/or upgradable memory card would be a

highly desirable feature.

Developers had further needs not addressed by these specifications, namely

reliability and robustness - in particular for time-sensitive code for data capture and

processing, and security, to protect vehicle networks from malicious attacks or data

sniffing. "Black boxing" and/or code protecting particular regions of the embedded
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software could accomplish these needs for the embedded system, but much of this feature

development would be server-side to protect the database and API.

The electrical needs were derived from findings learned from the previous

hardware. Any design would need true rather than assisted GPS to provide accurate

positioning data. Many OBDII power ports in vehicles were current-limited, so there was

a soft 2.5A cap to ensure maximum compatibility. The device might require service in the

field (especially during the development phase), so an onboard programming port - like

JTAG or ICSP - would be essential, as would a way of viewing debug data in the field. A

widely compatible and removable memory device would ensure users could debug and

share data if the cellular communication failed, and keep costs for supporting hardware

like card readers low. Keeping the unique and total parts count low would reduce cost,

while support for analog inputs - like accelerometers and battery voltage readers - would

not increase cost and significantly increase functionality. Finally, a USB bootloader

would ensure redundancy for field reprogramming, while a battery backup might solve

problems in some limited-power scenarios by providing buffering capability, while also

reducing drain on the vehicle charging system.

To interface with the vehicle, a standard diagnostic link SAE J1962 connector

would reduce complexity and provide universal access. Some drivers run double battery

systems to help start larger engines in cold weather, so 24VDC support was essential, as

was reverse polarity and overvoltage protection, to ensure an internal short would not

damage the vehicle or hardware in an irreparable manner. The network interface would

build on the previous version's TCP/IP encapsulated serial port, possibly adding support

for T(rivial)FIP for file uploads and downloads. The cellular network configuration

could be GSM or CDMA, perhaps in conjunction with Bluetooth, with a minimum

throughput of 19200bps to prevent a data bottleneck at the designed sample rate.

The previous hardware did not have an enclosure, but for wide distribution later

revisions would require a custom-designed case. This case would need to be UV-resistant

and water and dust sealed, with a target of an Ingress Protection (IP) 56 rating and a

material capable of withstanding temperatures up to 140F for when drivers leave the

module out in sunlight regularly [47]. For user feedback, the hardware and case would
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need to include provisions for viewing power, connectivity, and general purpose LEDs,

ideally through directional light tubes to make viewing status at a glance simple.

Finally, the software specifications had evolved from those of the previous

embedded device and with lessons learned from optimizing the interrupt routines on the

Arduino model. Key features to add included the detection and remote reflashing of

software updates, Power-On Self Testing (POST) for all peripherals, and improved

security for data capture and transmission (e.g. Secure Socket Layer [SSLJ).

Additionally, tweaks to the existing software could enable faster PID sampling, local

parsing of Diagnostic Trouble Codes (DTCs), and VIN reading (not present in the

previous version).

34 ARM7 Makes a Comeback: Real-time Schedule System Wins Out

As it turns out, most of these needs had been addressed in the previous ARM7

LPC2129 hardware revision, and the majority of the errors had been introduced though

the deployment of faulty software in an effort to meet time constraints. Therefore, the

next revision of hardware ("Version 5") would base its design off the previous LPC2129

iteration ("Version 3"), with key changes between the revisions being the incorporation

of an onboard multiplexer to switch between a Roving Networks (RN41) Bluetooth

chipset and a Telit GM862 cellular modem, a reduced-complexity board layout and a

transition from SD to microSD memory cards. The inclusion of Bluetooth eliminated the

chance of being completely out of cellular coverage, enabling the use of M2M

communications (e.g. cell phone unlocking in a covered parking garage) in addition to

MCM data uploads. The hardware was optimized to fit the same form factor as the

previous version while incorporating this new hardware and an improved power supply,

and the Bill of Materials (BoM) was optimized so that the cost to manufacture broke even

despite the added features. The majority of savings were identified in specifying antennas

and power supply components.

The author produced twelve copies of this board and tested extensively prior to

designing the final embodiment of the hardware discussed in this document. This section

will explore the design decisions made after determining a move back to a scheduler-

based OS was necessary, and explore some of the lessons learned throughout the

development process.
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In testing, the Bluetooth feature was rarely used and required custom software

development that would take up significant codespace - the cellular coverage had been

better than expected with new antennas, and Bluetooth less reliable than was preferred.

Further, the addition of Bluetooth greatly increased the Bill of Materials cost and required

additional support hardware like new power supply ICs. Removing this module and

related hardware, and shifting from a removable Telit module (GM862) to a Ball Grid

Array (BGA) module (GE864) the BoM cost could be reduced by nearly 50% with a

similar component count. Additionally, the GE864 would allow further board

optimization, as the form factor was smaller in all dimensions.

Figure 11: Version 5 of the CANPuter hardware, featuring
both Bluetooth and cellular communication. The yellow
jumper wire shorted the bootloader to ground for
programming initialization.

The redesign process was iterative and built upon the rework of existing boards in

conjunction with simulation. New hardware architecture emerged that remarkably

resembled previous versions, but the new configuration cost less and had better thermal

characteristics and improved noise immunity due to more thoughtful trace routing. The

resultant hardware was based off of an ARM7TDMI platform running FreeRTOS as a

scheduler to manage tasks. It would plug into a standard J1962 diagnostic port and log

CANBus OBD, three-axis 1.5g, as with the previous versions, and add a 48 channel GPS
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receiver and log data to a microSD/microSDHC card. This next segment details several

design choices in the context of four key design guidelines:

* User friendly - the hardware is plug and forget, to minimize user involvement

and therefore maximize collection of untampered data

* Reliable - the hardware buffers data to ensure completeness regardless of cellular

coverage, adapts to certain in-vehicle networks non-compliant with the OBDII

specification, and is remotely updatable should a problem be detected in Power-

On Self Test (POST) or a software update be made available. A secondary, SD-

card based bootloader provides redundancy in upgrade paths should a flash event

fail

* Protective - the hardware design is SSL-capable to reduce the chance of over-

the-air man-in-the-middle attacks (local attacks may be possible with physical

access)

* Secure - the addition of external sensors, such as accelerometers, can provide

data to mitigate risk of "spoofing." Additionally, periodic VIN reads ensure the

device has not been relocated since power-on

3A.1 Cellular Connectivity

Many vehicle scan tools tout wireless capabilities. However, these scan tools

utilize Wi-Fi, Bluetooth, or ZigBee to communicate with other devices (machine to

machine, or M2M). These networks work well for visualizing data on a mobile device

such as a laptop, tablet, or cellular phone. However, these networked devices all operate

at a short range and as such have a fundamental flaw.

For mission-critical metrics, the straightest path between data source and the

computation of analytics is ideal. With a short-range protocol, performing analytics at a

central location requires the use of a bridge device. Bluetooth devices, for example,

require a phone as a bridge to the Internet. If the driver forgets his or her phone, or if the

battery dies, the data never makes it to the network and is lost. Further, many short-range

scan tools provide real-time data with no means to buffer this information, preventing

future auditability. To avoid this pitfall, the author elected to design the diagnostic device
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with an integrated cellular chipset, mirroring critical vehicle parameters to a central web

server.

This design decision turns the vehicle into a self-reporting sensor requiring no

user intervention after initial setup. Deciding on a cellular chipset was critical to driving

further design decisions. Primary considerations for cost/benefit analysis included power

consumption, bandwidth requirements, latency requirements, and long-term network

roadmaps. Devices within a similar class (e.g., 2G, 3G, LTE) had similar power

requirements, so the next step was to examine network requirements. Latency was not a

key factor, but bandwidth use was. Bench top testing of a CAN data logger outputting

raw data to a serial terminal demonstrated a bandwidth use of approximately one

megabyte per hour, with two megabytes as an upper boundary when reporting VIN,

latitude, longitude, speed and distance metrics every five seconds. The 2G network was

sufficient to handle this volume of data, had mature coverage, and offered low-cost, low-

power cellular modules.

The low volume of production limited access to suppliers. Many suppliers dealing

in the 10's, 100's, or even 1000's were Chinese vendors with no online presence and

poor documentation. Telit wireless modules were, by contrast, only slightly more

expensive and offered excellent documentation along with development kits. In early

development, the author decided to develop using the GM862 module due to its low cost

and removable module design. mikroElektronika produces an excellent development kit

for this module. After validating performance using a series of large file uploads and

mapping exercises (driving to ensure connection robustness), the GM862 proved itself

competent in both keeping a connection alive and providing GPS positioning data.

However, this module was bulky and increasingly hard to source as it neared end of

production life. A meeting with a local Telit distributor led the author to test the GE864-

GPS, which is largely pin-compatible and offers lower power consumption and an

integrated, high-quality SiRF GPS receiver. Sourcing these modules proved to be a

challenge due to the lead time, but otherwise proved to be a wise design choice.

Late in the project, AT&T announced it would be sunsetting its 2G M2M

platform. While the hardware relies upon 2G technology, Telit offers a software-

compatible upgrade path to 3G with new, power-efficient modules.
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3A.2 Memory as a Buffer

As mentioned previously, a downside to wireless connectivity is the intermittent

nature of the connection. Typically, this is not an issue - with webpages, packets are

requested again and again until they make it through. In the case of a vehicle, however,

gaps in coverage - due to cross-country trips, tunnels, or even parking underground - are

more significant problems. A further problem is the latency when using a 2G module. As

a design decision, the author elected to send a message to the server every 5 seconds.

However, this time step is coarse and not much can be done with data of such poor

granularity. The hardware on the board is capable of logging at >1Hz. To address both

problems, the author added a microSD memory card to the diagnostic hardware to serve

as a buffering device. At the end of each drive, as determined by GPS location stagnation,

the contents of the most recent buffer file are uploaded to the server. This data fills in the

interstitial gaps, providing a richer dataset and backfilling areas with poor connectivity.

An unexpected, additional benefit: the same memory card can be used for

software updates, eliminating the need for special programming cables and providing a

means of "unbricking" the device in the event of a bad flash event.

3A.3 Sensor Payload

The sensing hardware provides access for CANBus data as well as GPS data.

Additionally, the hardware includes a three-axis accelerometer. This data is of value

when determining energy use, and also when attempting to prevent data "spoofing" - by

providing reference data about the orientation and location of the device to compare

against the CANBus diagnostic data.

Thought not included in the most recent hardware, an additional input that would

be of value is battery voltage. This would allow the device to turn off to avoid draining a

car's battery entirely. A general purpose input / output is available on the latest board

hardware, so such a circuit could be added on if necessary.

3AA Real-Time Operating System

One of the key design decisions for this hardware was the decision to use the

Real-Time Operating System (RTOS), FreeRTOS. Typical microcontroller-hosted
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applications run in a single thread. In many cases, these applications simply loop a series

of operations over and over ad infinitum. Slightly more complicated systems may use a

priority interrupt, to pause the loop when a certain event occurs, execute a bit of

processing code, and return to the main loop. When the code reaches a high level of

complexity, this looping execution is no longer sufficient as it can cause delays in

execution or even back up so much as to miss incoming data.

To capture the maximum amount of data (by preventing buffering issues as well

as operating at a higher rate of speed), the author chose to use an RTOS populated with

the following tasks:

Upload - upload data to modem

Accelerometer - capture accelerometer data

GPS - capture GPS data

OBD - capture OBD data

Record - write message to SD card

The RTOS is configured with a time-sharing scheduler. This type of scheduler

switches tasks on regularly clocked interrupts, creating the illusion of seamlessly running

multiple programs when in reality they alternate sequentially but generally

deterministically (finishing in a set amount of time). Incoming data interrupts add an

additional layer of complexity to this design, but a thoughtfully crafted scheduler allows

the device to do more, in a more repeatable manner, with less hardware resources.

The RTOS allows more predictable steady state operation of the hardware, but it

is not without its challenges. The OS requires additional FLASH and RAM space. It also

presents many issues with sharing data between tasks. In the design and development of

our software, the RTOS was the root cause of a number of issues. Most commonly, these

were attributable to memory leaks and unpredictable memory addressing. As the code

became more complicated, RAM limitations forced constant optimization of software to

avoid stack/heap collisions that would result in unpredictable performance and hard to

trace problems.
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3.4.5 Processor Selection

The processor onboard is an LPC2129 by NXP, an ARM7TDMI processor. These

processors are among the most widely used ARM codes, keeping costs low and offering

multiple angles to approach the supply chain. The LPC2129 was an ideal choice as it is

natively supported by FreeRTOS and offers sufficient peripherals for all of our interface

devices (2x UART, 2x CAN, 3x ADC). All programming for this processor can be done

with freeware tools like TextWrangler, ARM-ELF-GCC, and FlashMAGIC. Similar

processors offer additional RAM, FLASH, and peripherals, allowing an easy path for

future development.

34.6 Software Features

The embedded software is primarily a data acquisition and logging system, but

has several interesting features. The device is capable of reading configurations from the

SD memory card, a feature that greatly reduced development time and allowed easier

debugging when testing. These parameters on the SD memory card include SIM card

parameters, which OBD parameters to sample, sampling rates for all tasks, and server

addresses. A remote update task is implemented (but disabled until a password

verification is implemented due to security concerns), as is a "heartbeat" wakeup to allow

the device to connect to a server and download an update even if the module is in sleep

mode. Basic file system manipulation over the air is included, allowing files to be read

remotely, in addition to buffered file recording and uploading on shutdown. VIN reading

is included but was a difficult feature to develop, as some manufacturers use different

addressing schemes (e.g., GM, who will not respond to a VIN request from functional

address Ox7DF on the ECU, and must be directly messaged from functional address

Ox7EO). The code automatically adapts in these cases, trying different functional

addresses until the module receives a valid reply. Finally, power saving through voltage-

based shutdown is possible in this code, but is not implemented, as the most recent

hardware does not support voltage reading from the OBD port (instead using the analog

input to sample an accelerometer channel). This feature may also not work as expected in

(H)EV vehicles due to different voltage regulating technologies, but may be worth
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exploring. The below list mentions several other features implemented since the author's

undergraduate thesis.

* Band configuration and SIM PIN support
* Remote reconfiguration
* Remote software update
* Accelerometer, GPS and OBDII data upload
* Version reporting
e Remote bootloader upgrading
* File sending (completed logs)
* Check engine - read and clear light
* Send/receive packet on secondary network
* VIN reading and reporting
* Automatic reconnection

3.4.7 Security

This document will not discuss the security of in-vehicle networks, as this is a

widely researched field and the problems with in-vehicle networks are not addressable

with diagnostic hardware. However, it should be noted that remotely updatable hardware

can pose a security threat and these concerns must be addressed on both the embedded

hardware and on the server to ensure only authorized code makes it to the module. Even

local flash events (via SD memory card) are possible to exploit, and these issues must be

explored.

For car to server communication, the GE864-GPS cellular module supports SSL

encryption. The embedded software provides a framework for this interface; however, the

server does not yet support this method of connection.

3.4.8 Bootloader Development

Initially, a USB in-circuit serial programming header loads software. This

software downloading routine is reliable and cannot be corrupted as it resides in non-

writable memory regions. However, it requires specialized hardware and software to

deploy updates, which adds cost, complexity, and time when programming.

In testing, it became apparent that a bootloader would be necessary to recover

from flawed updates or flash events resulting in corrupted memory locations. The
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immediate solution to this problem was to design and deploy a bootloader that reads

updates from the microSD card and stores the contents to the code region in memory.

This was done through active collaboration with a contractor located on the online

freelance site, oDesk. The designed bootloader is invoked by the hard-coded bootloader,

checks for the existence of a file, runs an update routine if present, or launches the main

application if no update is available. This ensures that, should the software become

corrupted, the bootloader will always run and any bad flash event may be recovered in

the worst case by removing the memory card and copying a file from a PC to the memory

card's FAT partition. The bootloader also stores "backup" images to copy over should a

flash attempt fail, but no file validity checking at present.

An extension to this concept is the over the air (OTA) bootloader, which

automatically downloads updates from the server to the memory card for invocation upon

startup. Updates are triggered upon noticing a change in version number between the

installed software and the latest available, invoked directly from the server database, or in

response to a failed POST. Updates are sent 512 bytes at a time and emulate the SD card

SPI interface, by validating transmission with a CRC16 checksum - reducing required

code space by allowing the sharing of libraries. In testing, this method has worked well

except in the single case where an update pushed to connected devices had an error in the

file download routine. In this case, the local update routine (copying files) avoided a

more embarrassing resolution to the problem.

Security in validating updates is critical, but the author was unable to deploy any

protection against attacks by the time of this writing. This would ideally involve

authenticating firmware images and connection channels. It may also require the

cryptographic signing of a file to be decoded with a private key or shared secret key. This

hash would encode version, target platform, format, and other metadata.

3.5 Hardware Production / Software Development Stair-steps

The hardware rollout was driven by the VMT application example, and could be

broken into four distinct stages of software development. Code for version one provided

hardware and software capable of determining vehicle miles travelled using only OBDII

diagnostic data, which would ensure that the OBDII portion of the hardware met the
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specifications set forth earlier for sample rate and that the hardware could connect to the

intended networks. Version two expanded upon this hardware with the ability to collect

data for fuel economy estimation (essentially a higher-bandwidth capture, often pushing

the limits of the vehicle ECU). Version three added cellular communication, which

challenged the connection, reconnection, and keep-alive routine design, while version

four added the requirement of GPS data logging and retransmission. A reach-goal version

6 added a second CAN transceiver for sensing and actuating on a second network, like

General Motors GMLAN single wire BUS (necessitating a fault-tolerant CAN transceiver

to avoid the generation of RX passive errors and BUS OFF situations - a fact discovered

late in testing). All versions would be tested on an OzenElektronik bench top OBDII

simulator and then in a series of vehicles owned by friends of the author. The hardware

for all versions remained unchanged, speaking to the successful implementation of a

futureproof hardware architecture.

To produce the hardware required sending board design files ("Gerbers") to a

fabrication house in Shenzhen, China, who produced a single example PCB to prove the

hardware worked prior to sending 99 more devices. To test these devices, the team

created a user guide for the hardware and gave devices to end-users without any

coaching. The results of this consumer testing will be discussed at length in a later

section, and lessons learned in the design process are summarized below.

3.6 Hardware and Software Obstacles and Amelioration

The development of this hardware faced constant barriers to deployment on both

the hardware and software sides. These subsections describe the challenges to

deployment in detail.

3.6.1 Hardware Design Challenges

Power presented a significant issue in testing. A combination of improperly

gauged wire and improperly low ESR capacitors caused brownout conditions where the

modem shut off arbitrarily. This problem was addressable through the creation of a

watchdog timer to ping the cellular module and reapply power if necessary.
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Antenna design was, and remains, a problem. The previous cellular module, the

GM862, provided internal LNA amplifiers that were powered by the primary input

voltage. The newer module, the GE864, was "command compatible" but not pin

compatible and did not power the LNA from the module input voltage directly. This

resulted in confusion when an order of 100 active antennas arrived and the board did not

have provisions to power them. The antennas were not returnable, so to avoid

significantly soldering rework the author had to order passive antennas. These antennas

were non-stock items and had to be custom manufactured, adding weeks to the

deployment time for the hardware.

The final identified hardware issue was minor, but an annoyance. The author

incorrectly specified a part number resulting in the installation of inverted transistors

(NPN instead of PNP), resulting in the need for hardware version compiler flags (to

invert the power-on command for the modem), and resulting in the inversion of feedback

LEDs (turning lights on to indicate sleep mode rather than activity, for example).

3.6.2 Software Complexities

Software development was plagued with similar issues. The most difficult to

solve was the implementation of an SPI-based driver for microSD memory cards. The

hardware did not have sufficient free pins available to implement SDIO, so SPI became

necessary. Evidently, microSD cards are not required to support the SPI specification in

the same way that full size SD cards do. Many cards did not support the specification,

and others required the use of low-speed interfacing, causing complications with the

scheduler system and limiting the maximum data capture rate. SDHC memory cards also

presented difficulty in that these cards required automatic identification and a shift from

byte to block addressing. 2GB cards were largely not usable due to their use of 1024-byte

sectors rather than 512-byte. Ultimately, the solution to these problems required a

complete rewrite of both the SPI and SD card drivers, as well as tweaks to the filesystem

used (FatFS).

The second software difficulty was equally challenging to debug. As the code

grew, the hardware began to act in unexpected and non-repeatable ways, rebooting or

printing incorrect values or simply stalling altogether. This was later determined to be a
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stack overflow. A JTAG debugger would have been incredibly helpful in diagnosing

these problems, but printing "high water" marks indicating peak memory use values sped

up the development of the software after the first several stack/heap collisions had been

identified.

Despite attempts to eliminate bugs, some external factors - like a large number of

error frames on the network in conjunction with an unreliable microSD memory card -

could in rare cases result in file loss, including the configuration file. This would prevent

the hardware from connecting to the server, and remote updates could not be deployed,

even though the board was capable of identifying the problem. Though by the time of this

writing this error has not been repeated, the author implemented a solution to this

problem. The hardware now has a list of default network providers stored to memory, and

automatically cycles through them if the configuration file is not found. The device logs

in with a special user identification number and the server knows to send a new

configuration file to the device. In the event a bug locks the software up entirely, a

watchdog timer reboots the board at 24-hour intervals, during which the hardware may

check the server for the availability of updates.

3.7 Novel Development: Interesting Features and Testing Results

The previous version of the ARM7-based hardware was a proof of concept and as

such did not deploy many of the more advanced features the author would have liked.

The most recent version received several upgrades during the development process, and

the following section discusses these features in depth.

3.7.1 Auto Off

Many vehicle diagnostic tools do not automatically shut off. For low power

devices, this is not a problem as the vehicle battery can provide for weeks and even

months of uninterrupted operation between charging. However, more complicated

diagnostic devices consume considerably more power through the use of more advanced

processing units, displays, or wireless communications modules and powering these

devices without excessive battery drain becomes challenging.

This solution automatically detects when the vehicle is stationary and turned off

and enters a low power mode to conserve battery life on vehicles which lack the
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capability to turn off the diagnostic port (the majority of those tested, as of this writing).

Additionally, these data will be useful in determining the stopped state of a vehicle better

than existing technology, as it facilitates knowing when the vehicle is simply stopped

versus parked. Sample characteristics - such as RPM - combine with other signals - such

as electric motor speed, in hybrid vehicles - to determine when the vehicle has been

parked sufficiently long to warrant turning off the device. Similarly, a low-power mode

may poll for the values from these and other sensors, like accelerometers, to determine

when the vehicle is once again moving and re-enable high-power features. The net result

is the same volume of data as an always-on system, with the added advantage of

consuming significantly less power. Owners of devices with this added functionality do

not have to worry about unplugging their diagnostic tool, even during extended parking.
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Figure 12: Flow chart describing power save and wakeup
conditions, parameters read

The author tested several versions of this technology. In the first example case, a

sensor monitors engine speed (RPM). Based on engine speed, it may be determined if the

engine is on or off. If the engine is off for multiple samples of this datum, it may be

reasonable to assume the vehicle is off - and to cut power to the device.
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In another example case, RPM is not being sampled, but the device reads input

voltage. Examining the voltage levels and waveform, it is possible to see that the voltage

drops when the engine is shut off and in cases the waveform becomes smooth. Again, this

case would lead to the device being shut off.

The third case requires a parameter not already sampled be added to the sample

list. This value may be added as a "low priority" sample and read when the device is not

already busy, or at very infrequent intervals. This parameter is not already being

requested by the program on the device or connected to the device. It might be

"velocity." This parameter, or others like it, may be preferred even if other samples such

as RPM are already present. This is because the gasoline engine may shut off in a hybrid

vehicle, but the car may still be moving. Again, when the device determines that the

vehicle has been stopped for a predetermined number of samples or a predetermined

time, the device enters low power mode.

The system may use historic data to determine driver and vehicle trends to

optimize on/off thresholds and sampling rates for these data, but in testing, relied on

hard-coded values determined empirically.

In low power mode, non-critical functions are shut off. These functions may

include wireless connectivity, indicator lights, displays, or additional sensors such as

accelerometers. The device may turn the processor off, put it in a low-power mode, or

keep the processor running at maximum speed. In cases where the processor remains on,

the same technique used to shut the vehicle off may be used to determine the vehicle is

on and reactivate the device. In testing, the hardware disabled all extraneous

communications and sensing devices.

This provides the diagnostic tool with greatly improved battery life, and adds

functionality in the form of stopped/moving and/or on/off detection. These data will

facilitate the development of further applications, such as traffic prediction algorithms.

After deploying this method on the fleet of testing vehicles, a "bug" was

discovered. "Nagging" PID requests keeps the ECU awake as it expects further incoming

requests. One solution is to throttle the sampling rate in sleep mode, but this is not a

reliable way to wake up and severely decreases responsiveness - especially seeing as

some cars tested had a 30-minute timeout (meaning a 30 minute sample period would be
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necessary, and could therefore miss capturing data from any drives taking under 30

minutes).

A new approach leverages accelerometer data to wakeup when motion is detected,

while still shutting off using OBD. This improves responsiveness, but is not without

challenges of its own. Calibration is difficult - there are a number of routines, but a two-

point average and a correction factor allowing for noise seems to work well. However, to

keep the device sensitive enough to wake up even when in a vehicle driven gently, the

threshold for power-on must be set low enough that vibrations like passing trains can

wake the module. This required the development of a "NO OBD" recognition algorithm

to turn the device off if the car has already shut down and the engine computer is

returning invalid data. The advantage to this approach is that data are reported after

vibration events, allowing for the creation of "bump and run" detecting applications.

The development of these routines led to the creation of paring and throttling

routines to stop requests for invalid parameters, either increasing the time interval

between OBD requests or removing parameters from the array of PIDs to be sampled.

This raises the number of samples per second for other parameters and reduces filesize

that would have been taken by invariant sensor values. A secondary benefit to this

throttling routine is that cars with slower ECUs that cannot keep up with the board do not

simply overrun and shut off - instead, the sample rate reduces until the board is able to

capture data.

3.7.2 Assuring Data Validity

Several applications for OBDII data require reliability of data capture, or in cases,

the ability to determine if hardware has been tampered with. The new CANPuter

implements many novel features to ensure data reliability, including tamper-proofing and

anti-spoofing measures.

One example scenario is the use of automotive diagnostic CANBus for fleet or

personal vehicle tracking software. There is not an immediately perceptible benefit to the

drivers of the vehicles, but the data are critical for the fleet managers to understand and

optimize the utilization of their vehicles. Individual drivers may wish to hide their driving

habits, leading vehicle operators to disconnect these devices to prevent a perceived
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invasion of privacy.

Presently, diagnostic system security metrics are either "security through

obscurity," or complicated install procedures that add cost and complexity to deploying a

new fleet vehicle, despite the fact that a sufficiently driven person could remove or

disable the system - often with basic hand tools. Other systems forego security and rely

on an honor system, as they make use of the plug-and-play diagnostic port on the

dashboard of cars or under the hood of large trucks. In both cases, a disconnected device

does not leave any indication that it has been disconnected - it simply looks as though the

vehicle has been turned off. Powering on the device with a bench top power supply at a

fixed location, for example, would make it appear as the vehicle was being stored in a

garage and not run.

This ease of deception makes relying on telematics and diagnostics systems

unfavorable. A tamper-proof system improves the reliability of the data by preventing

"spoofing" or removal of the device in its entirety. Detecting that the device has been

removed from the vehicle and reporting this change in status, immediately or upon later

memory inspection, accomplish this. Invalid data may then be discarded and potential

problem users may be identified in order to take appropriate corrective actions.
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Figure 13: Visualization of location of "security" nodes in
a typical vehicle

In the above diagram, the CANPuter plugs into the diagnostic port under the

dashboard. Depending on the implementation, the device "talks" to one, two, or all three

other devices in the vehicle and on the same network to ensure it has not been tampered

with. The secondary device responds to "rolling codes" that follow a call and response

pattern, the heartbeat device is a device already existing in the network that responds to

queries regardless of operational state, and the trace signal is a device already on the

network that returns data that can easily be classified (such as signal noise levels, voltage

changes over time, or similar). In the above diagram, the terms are defined as follows:

Diagnostic port - OBD2 J1962 connector, where the primary device plugs in.

Secondary device - trunk/under hood/etc mounted device for call-and-response
purposes. If one device is removed, the other will remain on the network and set a
flag in write-once memory

Heartbeat device - a device that is already on the vehicle network (like an
airflow sensor) that responds to the primary device in a standardized way, to
ensure the device is not removed from the network

Trace signal - a device such as a battery that reports a value that may be
indicative of operating state, e.g. battery voltage varying with time

There are several ways to determine that the device has been removed from the
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system. In some networks, simply detecting the removal of the external power source

suffices, which could be accomplished by sensing input voltage for level and waveform.

In other cases, the device might lose power frequently and power sensing would not be a

viable option. A second solution is to install two units in different, possibly hidden,

locations, allowing the units to communicate with one another over the network using

rolling codes or similar as a form of call and response. This way, if one unit is removed,

the other unit must be removed before it senses that a unit is missing from the system.

The rolling code adds an additional aspect of security to the system by making it difficult

to learn the format of the call/response in a short time. A third option would be to have

the unit query other devices on the network, such as sensors or additional computer

modules, to ensure that it receives replies and that the replies are of an appropriate

format. This type of sampling falls into two categories: predicted response, and known

format.

In a resting vehicle, battery voltage is a reliable option, as it can be sensed even

after the vehicle is shut off and will change over time, making simulation more difficult.

Noise characteristics, waveform, and general trends feed into determining if the predicted

response is valid.

In a moving vehicle, RPM or other sensor readings may be more appropriate.

These respond with a known format that would require a dedicated simulator to mimic.

Depending on the parameter, known format and predicted response may be combined

where additional classification is appropriate (for example, RPM in an idling vehicle will

rarely report the same value twice - so searching for repeated queries may be helpful in

determining that the data is invalid). In cases where tampering is highly likely, multiple

sensors, including some that may be located on the tamper-proof device itself, may be

compared, for example vehicle speed and GPS speed. This further reduces the likelihood

of a simulation device going unnoticed.

As a final tamper-mitigation tactic, multiple heartbeat devices may be used,

ensuring that a simulator would have to respond - in the expected manner - to more than

one type of message, perhapp in a pseudorandom order.

When the device is unplugged, disconnected from the network, or fed data from a

simulator, it will report the change in status to the party attempting to gather data.
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Reporting may rely on battery backup to send an SMS or TCP/UDP packet to a server to

notify the party that the device has been tampered with. It may set off a light on the

device and/or a buzzer, notifying the user of the problem. It may be possible to avoid the

use of a backup battery by keeping a variable stored in semi-permanent / permanent

memory, in cases including the time of disconnect for auditing purposes. In an example

case, the device reads this memory upon startup to determine whether or not the removal

was authorized and notifies the server if it was removed inappropriately. Alternatively,

the memory may be read with an external reading device to identify tampering without

requiring remote network connectivity.

In testing, communicating with other nodes belonging to the vehicle network or

checking for the presence of a broadcast message on the conventional OBDII network

was effective in determining if the device had been removed from the vehicle while

powered on. To determine the status when powered off led to as-yet unresolved battery

issues (due to powering multiple nodes and/or keeping ECU's awake), but a rechargeable

backup battery in a secondary device is a likely solution to this problem.

3.8 Secondary Network Sensing and Actuation

A feature not included in any existing consumer diagnostic tools is the inclusion

of a secondary CAN transceiver, allowing communication on additional vehicle networks

without requiring the use of a gateway node. The inclusion of this transceiver allows the

device to read or transmit messages on other networks that may include comfort and

convenience or infotainment. Messages are sent or received using a special "SEND"

command from the server that identifies the network on which the command will be sent,

and includes the arbitration ID of the transmitted message, data payload, and return

arbitration ID and read timeout. Any portion may be left blank to enable sending without

reading or reading without sending. In this way, the server can issue a command to

operate an actuator or poll a value from a non-OBD sensor.

Ultimately, this system may be migrated to a token-based approach to improve

security and enable a "firewall" approach running on the embedded hardware. A

dictionary stored on the microSD card allows for sufficient space to define rules for these

tokens, and would reduce the likelihood of malicious communication attempts without
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first requiring physical access. Additional modification will include a "constant read"

mode, allowing parameters which are regularly broadcast to be read.

3.9 Closing Remarks: The CANPuter in the Context of CloudThink

Regardless of this particular hardware implementation, the platform is open and

therefore accessible with other hardware versions. The focus here is the data, and the

author believes that "black boxing" hardware to create a transparent user experience leads

to generation of better data. Despite this, the open source nature of this project drives

creativity and avoids potential IP conflicts, while allowing freedom to innovate. The

CloudThink standard will allow other hardware manufacturers to enter the field and bring

innovation to drive data generation along with user satisfaction.

3.10 Integration with the server

With the hardware on track, designing data capture and application servers

became the next focus of the project. This section describes integration of the new

CloudThink embedded hardware with the server, though goes less in-depth as Simon

Mayer (PhD Candidate, ETH Zurich) took over server development responsibilities

midway through the project. This section will focus on the author's contributions and

more general themes.

3.11 Server Design Architecture

The server has several responsibilities. Primarily, it must provide a means of

collecting data from all CloudThink devices in the field and managing the database. This

will provide users and developers alike with a trusted storage location for their data, free

from data siloing and with unique access control methods to ensure security and privacy.

Secondarily, the server must serve data to third parties though an API to allow the

creation to applications. This handles the difficulties associated with creating a platform

to allow developers to focus on their core competencies: building compelling, value-add

applications. The server handles security, sharing tools, per-query billing, and a

share/subsidy model to allow users to share their data with trusted third parties in

exchange for free or discounted applications or bandwidth.

The database server captures incoming data via a Python or Java script and stores

entries in a MySQL database. These entries are logged per-VIN, or per-UID (unique
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[hardware] identifier) if VIN is unavailable. The values stored to the database are human-

readable, e.g., HEX is converted to ASCII format. Values may be accessed using a

RESTful API and require per-VIN credentials.

The server is based off the Python script from the author's undergraduate thesis,

with improvements for more robust connection management, two-way data, and

improved error handling. Three entirely new features include the processing of gap data,

remote updates, and bidirectional communication to allow for actuation. Gap data

processing allows the storage of bulk data after a drive, filling in the interstitial gaps left

by the more sparse real-time data stream with contents that had been logged to the

microSD card and uploaded after vehicle shutdown. Remote updates push update binary

files to connected devices 512 bytes and a checksum at a time, while actuation sends a

command to individual connected nodes to send and/or expect values to or from

particular arbitration IDs on secondary networks. This was all accomplished using the

existing Twisted Framework software and making use of "self.transport.write" function

in conjunction with per-vehicle variable storage to ensure replies were sent to the proper

receiving node.

Simon Mayer wrote the application server using Java with a Glassfish/Grizzly

framework to create a RESTful API capable of outputting both machine and human

readable data. This program tracks queries for possible future billing purposes and has

provisions to support user accounts and permissions to ensure user security, which is

validated by an SSL certificate.

User privacy is an explicit goal for the CloudThink platform. Users must be able

to control the entities with access to their data, and to what extent these data are shared.

The server was designed with avoiding common social network pitfalls, such as

insufficient or poorly visualized access control, in mind. One problem not addressed and

a subject for future work is ensuring privacy from the platform owners, either by

encrypting data prior to storage in a database and sharing a decryption key, or some other

method of ensuring data are obfuscated that may be less computationally intensive.
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Without consumer focus groups, it would be difficult to anticipate user desires at this

stage in development.

A basic depiction of data flow to and from the server platform appears below, in

Figure 14.
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Figure 14: CloudThink system architecture showing the
CANputer and 3rdparty servers hosting client applications
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4. Chapter 4: Deployment and Testing Results

This chapter covers the production and deployment of the first 100 units of the

version 7 hardware, the state of the server throughout rollout, results from the first users,

and the status of CloudThink and testing results for the canonical VMT and fuel metering

applications.

4.1 Problems and Resultant Lessons

This section discusses lessons learned throughout the hardware, software, and

server development broken down by development group. In many cases, these points that

may seem obvious are actually subtle and have cost days or weeks of development time

to resolve. From the author's perspective, these notes are the most valuable takeaways

from the entire project and may help designers of future systems avoid similar

development challenges.

4.1.1 Hardware Production

The role of supply chain on timing and cost was substantial in this project. While

all software development was done in house, manufacturing of the electronics was

outsourced to MyroPCB in Shenzhen, China.9 The author ordered integrated circuits and

passive components from US-based suppliers and shipped these to China for final

assembly. MyroPCB is a high-tech fabrication facility and produces PCBs in house along

with stainless steel stencils for solder paste application. Pick and place machines

assemble boards, using adhesives to allow for the creation of double-sided boards, and

populated PCBs are then reflowed and/or wave soldered for final assembly. MyroPCB is

a medium volume production facility, but understood the complexity of the MIT

hardware design and offered to produce sample boards prior to the production run of 100

units. This came in useful after a flaw was discovered in the first sample of "Version 6"

that prevented power from being applied to the GPS module and led to a revision to

"Version 7".

MyroPCB was professional and reasonably priced. In the future, a local supply

house for the prototype boards would greatly reduce lead time as each design revision
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took at least a week to manufacture and another week in transit. The project's funding

was also tied up with MyroPCB for quite some time due to the redesign after the first

sample, and import taxes were incredibly high on an order of this size (bare PCBs do not

have an import duty when arriving to the United States, but assembled electronic goods

do). With the boards produced, the supply chain for support hardware was identified.

Alibaba and AliExpress were the most useful suppliers at this stage in procurement, but

the components identified were not without problems."0

The J1962 connectors and cables from AiExpress were faulty, though a lack of

on-arrival testing and long shipping lead times compressed the project timeline to the

point that these cables had to be used in final assembly of the "Version 7" hardware for

distribution. Further complicating matters, there were at least three distinct types of wires

and connectors, some of which were too small in gauge (causing brownout power

conditions), some of which arrived with chipped connectors, and some of which became

brittle and cracked in cold weather. To properly connect these wires required continuity

testing and constant spot-checking, taking a team of four students three full working days

to complete and solder to the PCBA. The lesson here is to fully specify each component,

no matter how small.

Figure 15: Failure to specify material properties led to
cracked cables and multiple wiring configurations

As mentioned in the design section of this document, antennas were problematic

for sourcing. The original GE864 PCB design required a type of unpowered (passive)

GPS antenna that was not produced and sold through common distribution channels, and

10 http://www.alibaba.com/, http://www.aliexpress.com/
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redesigning the PCB was not an option as the setup costs for samples would cost more

than even the most expensive bulk antenna purchases. It took weeks to locate a supplier

for these antennas, and the end result is a product that works well but is not optimized for

signal strength or price. From this failure to identify component sources, the author

learned to fully understand component support hardware requirements and identify

several possible supply chains prior to placing any board orders. It might have been

possible to avoid this problem altogether by reading datasheet errata and taking other

steps to reduce design risk earlier in the planning stages, well before starting any

production runs. Despite the failure to properly design the antenna interface, performance

has not suffered appreciably and the antennas are within OEM design guidelines [48].

Figure 16: Comparison of active (left) and passive (right)
GPS antenna configurations. Note the active antenna has a
cable connection, while typical passive antennas are "pin
mount" or directly soldered to a substrate. The passive
antennas used on the CANPuter are custom made from
active antennas with unpopulated low-noise amplifer
PCBs to mate with the IPEX connectors on the PCB.

With these recent sourcing pitfalls in mind, and as a learning exercise, the author

worked with FIL member Dylan Erb to design and manufacture injection-molded cases in

the MIT LMP shop. Dylan took initiative in creating the CAD models for these cases,

working creatively to design a symmetric snap fit to reduce machining complexity and

cost. This involved creating a set of "mirrored" snap tabs and relying on adhesive to

ensure a secure seal, as the injection molding machine used would not support undercuts

and even a small lip on the mold would cause plastic deformation.

To test the case model, the author printed a test version on a MakerBot Replicator

and then a Dimension 3D printer. The case as modeled worked well for 3D printing and

would have translated excellently to injection molding. However, limited shop

availability and the high cost of tooling meant that the injection molded part would
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require significant redesign from the "ideal" 3D printed model. The tab features were too

small to machine reliably and the severe draft angle required due to the location of the

ejector pins made smoothly interconnecting tabs impossible. Further complicating this

translation, the MUD used by the injection molding machine was limited in size. After

calculating the clamp force and shot size required and feeling satisfied that the machine

could deliver such forces, the mold had to be machined down in one corner to avoid

colliding with a locating pin, weakening the mold and allowing slight flex which led to

significant plastic flash. After tuning the machine parameters, the end result was a case

that is close to production ready, but one that requires post machining and is not water

tight without filler adhesive due to surface imperfections. Post machining for these cases

included trimming the flash off with a razor, inserting the cases in a wooden jig and

drilling with a stepper bit, and applying a wiring grommet and adhesive. The process was

simple but time consuming for the first 100 cases, and any larger production runs would

be better suited to a remachined mold.

Figure 17: Left to right -3D printed case, render of case
on mold, and injection molded prototype case

The following section describes many of the systemic problems faced during

design and assembly and lessons learned addressing these issues.

4.1.2 Radio Chipset Problems a Result of Convoluted Documentation

The single largest problem in the design of the V7 hardware revolved around the

radio chipset. In particular, the use of "pin compatible" in some marketing material

appears to have been a misnomer when comparing the GM862 and GE864 modules. In

the case of the GM862 to GE864 hardware swap, the pins were named identically but

several had dissimilar functionality. Further, pins that were internally bridged in the

GM862 required a trace to electrically connect on the GE864 module. This error
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prevented our GPS from working and required a new revision of the PCB, adding six

weeks and hundreds of dollars in development costs.

The author also misread the Telit GE864 documentation, ordering GPS active

antennas when in reality GPS passive antennas would have best suited the circuit. This

took weeks to correct and required getting custom antennas made in China due to the use

of a connector typically reserved for active antennas. In a similar vein, the author learned

to test all antennas in the full use scenario, including enclosures. Attenuation dramatically

changes signal strength, and antennas that performed well in one case did not work at all

in others. This required specifying the GSM antenna after the case design was completed.

Due to a last-minute change in case dimensions, different antennas were sourced

from the GaoKe Antenna Company. These antennas did not perform as well as the

antennas that had originally been specified and caused problems, notably at lower

frequencies. The intended specification appears in Figure 18: Si1 plot indicates low

rejection / strong signal and comparatively wide bandwidth for intended antenna in each

of the four bands (approximately 800-900MHz and 1800-1900MHz). Results are based

on EAD S-Quad Datasheet network analyzer results., while the return loss problem is

depicted in Figure 19. The notable omission of a fifth band, 2100MHz, manifested itself

in problems in non-US testing, though this is a result of module selection rather than

antenna specification.
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Figure 18: SJJ plot indicates low rejection / strong signal
and comparatively wide bandwidth for intended antenna in
each of the four bands (approximately 800-900MHz and
1800-1900MHz). Results are based on EAD S-Quad
Datasheet network analyzer results. The return loss at the
lower frequency band here is -12dB, whereas the antenna
with poor performance is -5dB.
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Figure 19: Si] plot (return loss) - showing high rejection
at low frequencies (850 and 900MHz band) and strong
performance at higher frequencies (DCS and PCS bands).
Simulation results from Ansys HFSS model of antenna, with
help from Isaac Ehrenberg. A better-suited antenna would
have a similar "dip" in the lower frequency bands as
appears in the upper bands, indicating lower return losses
and higher signal retention.

4.1.3 Power Supply and Cabling Cause Hard-to-trace Problems

The power supply presented many challenges during the design and testing of the

Version 7 hardware. Many users reported that the GSM status light would stop blinking

(indicating failed connectivity), and analysis of server logs confirmed that the boards had

non-cleanly disconnected. After tracing the issue with an oscilloscope, two problems

were discovered. The first was an issue with the power supply wires being too small to

supply the peak 2.5A the J1962 connector is rated for without measurable voltage drop.

The second issue discovered was that the ESR on the switching power supply output

capacitor was too high, leading to brownouts that could cause the cellular module to shut

off unexpectedly. Rewiring individual boards with thicker cabling and replacing the

capacitors or adding additional capacitors in series addressed these problems, but
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required significant effort to rework the 100 boards produced by the time these errors

were discovered.

4.1.4 Memory Card Addressing Schemes Vary

Memory card variation was a cause of significant delay in the design process.

When addressing (micro)SD memory cards, the SD specification - though costly - may

have been a better approach than using SPI. Many microSD cards do not support the SPI

specification fully. Similarly, 2GB memory cards were problematic to interface with - as

they were developed prior to the SDHC specification, and use 1024 byte blocks instead

of 512 byte blocks. In the end, software tweaks expanded compatibility, but 2GB cards

are not usable and some microSD card brands may not work in the board at all. These

same cards have been verified not to work in other devices that address the memory card

using SPI, so the problem is not likely to be a solvable software issue.

4.1.5 Code / Debug Best Practices

This section describes several "hard learned" lessons about code development for

embedded systems. The first is to develop with verbose error handling at the start - going

back and adding fault tracing took more time than proper coding practices would have.

Further, this verbose setting should be switchable by a compile time or runtime flag

(ultimately, the embedded software uses a compile-time flag due to code space

restrictions, but a runtime flag would be preferable).

Real-time scheduling is complicated. Periodically taking the time to map the

scheduler's tasks was immensely useful and resulted in a more efficient program design

that wasted fewer processor cycles. Similarly, mapping interrupt priorities and-thinking

through worst-case scenarios is a valuable exercise. Prior to doing this, the hardware

would rarely exhibit unexpected and unrepeatable behavior.

The final point covers hardware and software [What?}. Despite building in

verbose debugging over UART, tracing errors remained difficult. Designing in JTAG

support or at least building the code in an environment capable of simulation would have

saved significant time.
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4.1.6 CANBus Complexity Resulted in Difficult-to-Trace Errors

CANBus issues were incredibly difficult to trace. Only after purchasing a neoVl

Fire CAN sniffer and installing this device in parallel with the hardware was it possible to

analyze why the code was not behaving as expected." Viewing live communication

helped determine, for example, that the acceptance filter had been set wrong and that data

had been transmitted but the device was discarding the valid packets.

One of the most common problems had to do with functional versus direct

addressing. For example, some modules would respond to messages sent by address

Ox7DF (the diagnostic tool) while others would not respond unless directly addressed

(e.g., module id Ox7E8 would respond to queries from Ox7EO). This prevented reading

VINs on GM vehicles until an automatic detection script was integrated into the software.

Another problem was querying too fast, effectively causing a denial of service

attack. In this case, the network would appear to go offline, rendering the results useless

and possibly distracting the driver by causing other modules to display error codes, or

worse, becoming nonfunctional.

Despite the standardization of OBDII, non-OBD parameters are reported uniquely

in different vehicles. The VIN, for example, might be reported one way in a Ford vehicle

and another in a GM vehicle. When testing outside the US, this became more apparent -

vehicles using the same ECU part numbers as their US counterparts would not respond to

certain requests at all, despite sharing general OBDII diagnostic parameters (perhaps this

software difference is due to fear of reverse engineering and minimizing exposure in

nations where this is prevalent).

4.1.7 General Development Lessons Learned

One of the most critical lessons learned from this project was that any component

or assembly sourced from a supplier must be fully defined. The author failed to specify

the plastic type for cable assemblies, and consequently these cables became brittle and

snapped due to in-vehicle vibration in cold weather.
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Proper ESD packaging and safety is critical in the development phase. Only once

did ESD cause a problem with a circuit board, but this problem was difficult to diagnose.

Many cars on the road are driving with poorly maintained charging systems.

Despite having a minimal power requirement, the hardware was responsible for

discharging at least two car batteries in testing. Upon evaluation, the hardware was

determined to be in-specification, but the battery failed load testing when removed from

the vehicle. This problem was compounded by early auto-off software which kept the

ECUs from sleeping fully and requiring an addition 5-10W of power draw.

4.2 Device Deployment

With the case designed, and 100 units manufactured, the units were deployed to

testers. Early testers were selected for possessing only basic knowledge of computer and

automotive systems, so that in the event of a failure users would be capable of deploying

update files. While this saved the hassle of having to swap boards or visit testers to

deploy updates, the testers sometimes took matters into their own hands, editing

configuration files and changing settings that would make operation - or repair -

difficult. After successfully verifying the functionality of remote update, testing moved to

include users with no knowledge of embedded systems or diagnostic tools. These users

had fewer complaints, and the remote update recovery scheme worked well in cases

where programming errors required reflashing code (primarily, these events were tied to

stack overflow issues which would manifest as continual rebooting). As of this writing,

32 boards have been deployed with 26 drivers operating regularly. There has been data

transmitted from four countries and 12 states, validating the success of the hardware,

software, and server at small scale. The remaining devices will be deployed shortly.

The following sections describe specific responses and results from the device

deployment.

4.2.1 Network Testing: Full-Cycle Control is Key

In testing, the cellular network interface presented many challenges. The hardest

issues to identify stemmed from RF design, and designing a switchable antenna setup to

simulate various types of signal strength fluctuation and forced disconnect / reconnect

testing would have saved significant time. Other stumbling blocks included partnering
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with networks to view SIM card activity, as MIT would not sign a conventional service

contract with network providers. The initial AT&T M2M setup did not allow viewing

connected devices or bandwidth use, making it hard to diagnose if connection problems

were server side, hardware side, or somewhere on the network. AT&T introduced the

author to their M2M provider, Jasper Wireless, who provided the author with 10 SIM

cards and a portal to view data transmission in real-time and handle provisioning directly.

This portal allowed enhanced troubleshooting and improved control over network issues

such as bandwidth use.

Additional complications revolved around Access Point Name (APN) selection.

Some APNs prohibited bidirectional communication or communication on some ports.

This blocking was silent, and made debug of actuation and remote updating difficult.

Finally, APN selection is case-sensitive, which caused problems when users were asked

to self-update configuration files. AT&T's APN blocked outgoing communication from

the server port, so only after starting collaboration with Jasper Wireless did functions like

remote update and server-controlled actuation function as intended. With the Jasper

portal, the author was able to diagnose the remaining problems quickly and successfully

implement bidirectional data transfer, after the use of AT&T's APN server (which was

not properly configured for the CANPuter's use) cost the author significant development

time.

4.2.2 Consumer Sentiment: Reactions to Using Hardware and Data

Provided Valuable Feedback

The author asked the CloudThink testers for feedback frequently throughout the

design and testing process. Consumer sentiment was generally positive on the device side

of testing, with many users commenting on how easy the device was to set up and use.

Consumers liked the black-boxing of the data capture - a user rarely unplugs a silent

device, but will often unplug a device that requires attention. With users generating data,

they universally enjoyed being able to see the data their vehicle generated on simple web-

enabled maps. Some did express privacy concerns, though demonstrating the

username/password protection implemented on the server was enough to quell many

fears. No names were stored on the server in testing.
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The device did not distract from the operation of any vehicles, though some

drivers complained about the location of the diagnostic port and suggested the hardware

come with right-angle adapters to better route the cable. Many drivers experienced

software issues early on, but POST and remote updates addressed several of these issues

without user intervention. Developer feedback is still forthcoming, but early responses

have been positive with many developers enjoying a one-size approach to their

programming, allowing deployment of a single application across multiple web-enabled

devices.

The lessons learned from testing the platform in the context of demonstration

applications follow.

42.3 Using CloudThink for VMT Distance Monitoring

The decision to use On-Board Diagnostics (OBD) as the primary method for

distance monitoring is mentioned earlier in this document. However, this decision

fundamentally shaped the development of the embedded hardware and software.

Alternatives like GPS, wheel encoders, or other direct-reading sensors would have less

stringent hardware requirements than a network-based approach. These sensors would

require interrupt-driven sampling and logging rather than a true scheduler-based system.

The use of OBD rather than these simpler sensors necessitated complex software to

properly translate messages and to deal with timing requirements for long-format

messages.

OBD is a complicated specification that takes significant effort to implement. IC-

level hardware is capable of providing abstraction for this communication, but these ICs

are proprietary and therefore drive cost of supporting hardware significantly higher.

Therefore, the decision was made to simplify from a universal OBD interface (SAE

J1979) to the new federal diagnostic standard of Controller Area Networks, or CAN. This

was deemed appropriate as all vehicles sold since MY2008 are CAN-enabled, and many

MY2003 and newer vehicles support the specification due to the non-diagnostic use of

CANBus in vehicles since the late 1980's. Today, CAN enabled vehicles make up a large

pertion of the active US fleet, and nearly all hybrid and electric vehicles support the

standard. This decision to build strong CAN support allows for future expansion of
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network-sensor based VMT taxation, as heavy-duty vehicles follow a similar CAN

specification (SAE J1939). These trucks are capable of interfacing with identical

transceivers and have a wealth of available data on their networks, making high-GVWR

VMT taxation feasible with minimal hardware and software changes.

A major design junction occurred when exploring thin and thick client models. A

thin client passes raw data to a server, while a thick client processes data onboard prior to

transmission. These models are characterized in Figure 20.

Software
* FreeRTOS operating system provides reliable scheduling and task management
* OS performs primarily as a thin client, but has additional overhead for thick client tasks

Figure 20: Thin clients pass raw data to a server, while
thick clients process data onboard - requiring faster
processors, but protecting privacy.

To speed development of the platform and stick within the context of virtual

mirroring rather than onboard aggregation and processing, a thin model was the ideal

solution. This would allow better testing of the server architecture as well, by providing

richer data sets and stress-testing the input parsers.

In the hardware's default configuration, it provides GPS data for localization.

However, GPS is not a preferred metric as it can experience dither in poor atmospheric
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conditions, leading to questionable accuracy. Further, end-users do not like the idea of

being "tracked." Therefore, OBD would have to be used to record distances traveled.

Distance travelled is not a metric reported by OBDII. There are other options -

like speed, which can be integrated, or other sensors like accelerometers could be used,

though such sensors require complex software filters and drift appreciably over time.

Fortunately, there are metrics available that can be extended to approximate distance

traveled, and these are a legislated part of the OBDII specification. These metrics are

Ox21, distance in km since malfunction indicator lamp (MIL) turned on, and 0x31,

distance in km since check engine light cleared (both have scaling factors ((A * 256) +

B)). By combining these values and reading the state of the MIL from PID OxOl, it

becomes possible to define logic to measure distances traveled over OBDII.
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Figure 21: Map demonstrating location of single vehicle
path (from thin client). The lines are artRdacts of using a

single polyline to connect multiple trips in the Google
Maps API V3.
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In cases where users will allow, map-snapping provides a great reality-check for

these data, and a quick map-snap routine can be written using the Google Maps routing

API and routing each point to the nearest road. In early testing, results were accurate -

though every vehicle gathers the distance travelled differently (some manufacturers query

the speed sensor from an individual wheel, other manufacturers average all sensors) and

each sensor has its own error function.

Though there was not sufficient time to gather and compare distance metrics,

early results using GPS data alone have resulted in errors of under 5% on trips 30km or

greater. Further research into fusing OBD and GPS data using a Kalman filter is likely to

yield even better results. This looks to be an excellent opportunity for continued testing

and extension, perhaps to tracking or audit breadcrumb generation for salespeople

looking to deduct vehicle-related expenses. This model is also the basis for extension to

fuel economy measurements, and ultimately a similar system may be used to validate

efficacy of policy changes, like recent updates to CAFE standards.

4.2.4 CloudThink Fuel Economy Estimation - Two Approaches

There are many methods for calculating fuel economy from diagnostic data, all

with varying degrees of accuracy and slightly different data input requirements. There is

further complication when taking into consideration the fact that not all OBD PIDs must

be reported by law, and that even in cases where a PID must be reported, the sensor itself

may not be utilized. While some manufacturers provide fuel economy data directly, this

data does not address the larger problem statement of universal measurement. There are

so many different specifications, even within one automotive make, that it would be

infeasible to use these data to record distance traveled.

Provided here are two solutions for the most common vehicle setups - the first

case, using the Mass Air Flow (MAF) sensor, should work in nearly every CANBus

vehicle and is used commonly in industry and is calibration-free. The second case will

work for vehicles without a MAF, but requires a calibration to approximate the

Volumetric Efficiency (VE) of a particular engine. It should be possible to build a

database of common vehicle VE's, but this is beyond the scope of the project. Please note

that much of this discussion is based on an article by Bruce Lightner's 2004 Circuit
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Cellar design contest winner, but is corroborated by independent analysis and reverse

engineering of common diagnostic tools and software [491. In both cases, further data

(such as long- or short-term fuel trim, injector pulse width, or A/F from 02 sensors) may

improve accuracy, but are not commonly available and increase computational

complexity. Additionally, manufacturer-specific PIDs may report this value directly, but

this is not a universal access method.

4.2.4.1 The MAF Method - Airflow Approximation of Fuel Economy

This method uses the reported flow rate of oxygen along with vehicle speed and a known

combustion ratio to approximate fuel economy as shown in Equation 2.

14.7e.6.17*454*VSS*.621371 VSSEquation 2: MPG = 36 O 2 = 710.7 * -
A00

MPG = ideal -ratio * density of gasoline * vehicle speed * mass air flow rate *F

other dimension conversion parameters

where VSS is in km/hr and MAF is in 100 grams/second.

The calculated results here are approximations, as they assume perfect

stoichiometric combustion of gasoline. In modern cars, this should be close to the true

value as the closed-loop feedback system utilized by the ECU holds the A/F ratio very

close to the ideal 14.7:1. The primary limiting factor of accuracy here is the VSS signal

accuracy, as well as temporal resolution (when calculating fuel economy over time). This

method is less accurate during startup/warm-up conditions, as the A/F ratio varies here.

4.2.4.2 The MAF-less (IM4P) Method of Fuel Use Approximation

This method simulates the results of the MAF based on other sensors in the

vehicle using the formula shown in Equation 3, Equation 4 and Equation 5:

Equation 3: IMAP = RPM * MAP
f AT

Equation 4: MAF= 12- ) * ()

Equation 5: MPG = 710.7 * Ms
MAF
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IMAP is airflow based on the ideal gas law, in grams, RPM is vehicle engine

speed, MAP is kPa of manifold absolute pressure, and IAT is the intake air temperature

in degrees Kelvin (note that OBD parameters report in degrees Celsius). R is is 8.314

J/*K/mole, MM is the molecular mass of air (28.97g/mol average), ED is the engine

displacement in liters, and VE is the volumetric efficiency of the engine (this must be

calculated).

This method is not as straightforward and delivers less accurate, but likely still

reasonable, results (quantifying the error is beyond the scope of this report). Again,

accuracy is best during steady-state operation.

To configure the hardware to operate as a thin client, these parameters must be

called-out in the configuration file. The board will then sample PIDs:

- 'OD' (VSS) and '10' (MAF) for the MAF Method

- 'OD' (VSS), 'OC' (RPM), 'OB' (MAP), and 'OF' (IAT) for the MAF-less method

These parameters may be in addition to other parameters of interest, with the

hardware logging up to 10 in tttal. Keeping to six or less samples will prevent skipped

data frames, however, and reduce interpolation errors when integrating the results. In

cases where it is uncertain what sensors the vehicle supports, all parameters may be

sampled and invariant / unresponsive results stripped from the database.

Conversion factors for these sensors are taken from the J1979 specification and as

follows:

OD - Byte A = VSS in km/h
10 - ((A*256)+B) / 100 = MAF in g/sec
OC - ((A*256)+B)/4 = RPM in rpm
OB - (A) = IMAP in kPa
OF - (A-40) = IAT in degrees C (not K!)

4.2.5 Fuel Use: Field Test Results

Field-testing the MAF method yielded rich data. The fuel economy

approximations appear similar to the measurements from instantaneous fuel economy

presented by vehicle trip computers tested, though the author was unable to gather
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enough data to generate a concrete accuracy measurement. These data are visualized in

Figure 22.
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Presently, all deployed hardware captures the MAF metric's required parameters

to expand the pool of available data, and several drivers are recording fuel use for

comparison sake. These data will ultimately be able to provide better informatics, like

fuel used on a trip or cost of travel factoring in fuel use, cost of depreciation, and other

externalities, or even to validate the success and shape policy decisions for new fuel

economy regulations. Paired with a consumer-facing feedback application, these data

may ultimately be used to drive changes shaping future consumer behavior. The real-time

nature of the platform would allow corrective feedback to take place at a time when it

would be constructive, rather than critical. If such a system could shift the Emphasis on

Reducing Fuel Consumption (ERFC) away from its present value of 0%, the impact

would be massive.

4.3 Beyond OBDI!: Secondary Network Findings

After deploying the VMT and CAFE measurement applications, the author began

to focus on exploring what data and actuation possibilities lie on networks in typical

vehicles. Though detailed coverage is beyond the scope of this document, a brief primer

of "sniffing" techniques is valuable at this point.

Most vehicle sensors broadcast at intervals or on event. To determine what is

available on a vehicle network, a person may install a CAN interface on a vehicle

diagnostic network (the Intrepid Control Systems neoVI fire supports may types of

networks, and has an excellent software package for this process called VehicleSpy3)."

Sitting in the vehicle, the user may watch the flow of data and watch these data for

correlation to physical activities. For example, increasing engine speed may increase

another parameter - perhaps indicating the presence of an RPM signal - or pressing a

button may send a particular packet, indicating that the button transmits across the

network being monitored. After reverse-engineering these non-OBD packets, like door

locks and steering wheel controls, the user will have a map of sensors and commands to

use in the development of applications. Some sensors and actuators may reside on other

networks, and in this case it may be possible to utilize a manufacturer diagnostic tool to
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sniff "testing" commands that can actuate or sense other networks through the gateway

node, but this again is outside the scope of this document. The author looked into the data

available in several vehicle platforms supporting CANBus secondary networks, and

began developing applications to demonstrate the breadth of utility for the Avacar and

CloudThink platform.

4.3.1 Examples of work beyond OBDII

These applications roughly fall into the categories of visualization, sensing /

actuation, and inference, in increasing order of complexity.

4.3.1.1 Visualization

Visualization simply digests and displays processed data to a user, and is a type of

application applicable to OBDII parameters as well as extended diagnostics. Examples

of this type of application include:

a AudoIt: This software fuses GPS and diagnostic data to log miles traveled for

purposes of collecting a miles-traveled tax or providing an accurate metric of

miles traveled for corporate audits or personal records. CloudThink's security

features ensure the validity and accuracy of these data, operating in a thin client

(raw data transmitted) or thick client (aggregate metrics, no raw location data

transmitted) model. This model is a location-aware extension of the VMT

software.

a Teen tracker: This software provides a near real-time virtual dashboard and map

plotting service.
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Figure 23: Teen tracker software displays a reconfigurable
virtual dashboard
Find my car: This software locates the last location the
vehicle was operated and renders this point on a map.

k~)

Nine
Fresh Pornd Spring Hi

awbeirry
Hil

Wet ,\

I bv Csmrn1ge ft

ce-tt" ' \, .

(T Cambr

'4
grookline I
Emereon
Gordlens

Winteir Hill 'k.

Somrvule j
OjM

Word Two f

dg. c.
4 ,0 100 * Sr

AD Area IV

Ela a

Fenwayl a y- b,
Kenmore 0

a

Figure 24: Find my car shows the last-parked location of
any CloudThink-enabled vehicle paired with a user account

4.3.1.2 Sensing / actuation

Sensing / actuation reads data from the bus as a single point of information, or

alternatively trigger actuation. Actuation is not available on most OBDII networks, so
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current diagnostic tools do not have this capability. Some dealer level tools have this

ability.

* Remote lock/unlock: A cellular extension of a typical RF remote. This works by

directly emulating the remote control module and/or the telemetry module,

depending on the platform. There is limited latency in testing (< 3 seconds

typical), but this model could potentially be extended to allow CloudThink to be

applied to car-sharing services, like RelayRides. The availability of GPIO's on the

Version 7 hardware allow the CANPuter additional control options.

CloudCar Edit

LOCK STATUS: UNLOCKED

05

CLouDcom-

Figure 25: Screenshot of remote control locking software.
The CloudCar logo in the render refers to the project's

former name, CloudCar.mobi

4.3.1.3 Inference Applications

Inference applications take sensor data and act based on that very data. These

applications include location-cognizant apps, which use external GPS sensor data to

control vehicle functionality. No available diagnostic tool or in-vehicle software package

allows for this level of reactive control.

- DealerTrip: For vibrational problems, the author has demonstrated software using

the accelerometer to generate Fast Fourier Transforms to determine if the problem

is related to wheel, engine, or transmission speed.
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Figure 26: DealerTrip demonstration application shows
wheel speed (red line) vs. vibration frequency distribution
(FFT) to indicate that a) a vibration problem exists and b)
that problem is related to vehicle speed

Location-aware apps are a new field of vehicle applications that use vehicle data, run a

process in the cloud, and actuate based on location changes. Telematics devices and

wirelessly connected diagnostic tools are becoming more and more popular in passenger

vehicles. With them comes the added benefit of, in many cases, location data,

timestamps, and Internet connectivity.

= Weather watcher: an example location-aware application which has been tested,

successfully uses the GPS location to poll weather databases frequently, and if

rain is detected, roll up any windows which may be closed.
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Figure 27: WeatherWatcher uses GPS location to poll a
weather database and close the windows if rain is
imminent.

A future implementation of the location-cognizant vehicle setting adjustor makes

uses of these facts to dynamically change the settings of a vehicle or an in-vehicle

software application. For example, an application might poll a connected GPS device to

ask for altitude data and adjust the air/fuel map based on this information, using locally

stored databases. Alternatively, an application might make use of the location data to

keep presets "fresh" over a long drive, thereby eliminating the need for satellite radio or

streaming music.

In the above example embodiment, the user connects with the diagnostic tool or

telemetry device and installs an application like "NPR Anywhere" on the device. The

user enters a series of parameters, along the lines of "Update every 10 minutes," "Preset 1

- NPR," "Preset 2 - Rock," "Preset 3 - Pop," and so on. The device then uses the
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location data and Internet connection to poll a database and keep presets 1, 2, and 3

always set to NPR, Rock, and Pop respectively. This is possible today with databases like

FreqSeek and reverse engineering of steering-wheel radio controls, which often reside on

a form of CANBus.
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5. Conclusion

This thesis described the needs assessment and development of an intelligent,

open, and scalable platform for digital vehicle duplication as an inroad toward broader

monitoring systems. This platform included hardware and software to create a complete,

end-to-end solution for gathering, utilizing, and acting upon collected data. Such a system

was possible only when taking a holistic approach to understanding the current vehicle

telematics and informatics paradigm, Internet of Things development trends, and the

unaddressed demand for vehicle data across sectors.

While important to understand, and a provider of valuable data, vehicle

informatics systems were conventionally difficult to design and deploy due to the

limitations of OBDII and manufacturer unwillingness to share data. Valuable data exist

on the in-vehicle network but are not required to be shared across a common network and

are therefore underutilized. A similar lack of standardization plagued IoT development

and rollout of data mirroring platforms, despite the clear benefits the Cloud provides in

terms of crowdsourcing and real-timing (due in large part to agnosticism regarding data

sources and rendering devices). Thus, the author deemed standardization, in particular

open standardization, necessary to drive development of the platform and applications by

increasing data captured and improving their utility. Further, the cross-manufacturer

nature of this open standard would grow the pool of aggregable vehicles relative to single

manufacturer, siloed systems in use today. The first section explored this background

and presented the solution the author chose as a foundation for development.

In this document, the author described the successful development of the

CANPuter hardware, which mirrored vehicle data from OBDII, secondary CANBus,

GPS, and accelerometer data in the Cloud. A vehicle-to-cloud standard defined a 'means

of storing and accessing vehicle data on an elastic computing platform along with

standard security practices, a communications protocol, and canonical hardware for

bridging On-Board Diagnostic data to CloudThink databases, answering the call of

collecting and processing data and also creating a platform for others to build unique and

compelling applications. The development chapter discussed the challenges faced and

resultant solutions as well as novel approaches to problems faced when deploying this

new technology.
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The author discussed the decision process leading to the selection of an

ARM7/FreeRTOS architecture (free and open compiler, excellent feature set and

support), and the merits of MCM relative to MMC. In the former, data are mirrored to the

Cloud directly, whereas the latter requires a user middleware device that may decrease

reliability or increase latency. MCM is also discussed as being more robust when coupled

with a data buffer to account for poor cellular coverage.

The development chapter highlighted interesting findings from the design and

rollout process, including the proven reduction in latency for some applications using a

"buffer and backfill" communication scheme where data are uploaded at intervals and in

bulk upon shutdown. A similarly valuable finding pertained to the utility of a real-time

operating system in scheduling the system to maximize data capture relative to a

conventional, serial execution of tasks. This third section also touched upon unique

findings such as the fact that obfuscating development reduces active support time by

allowing developers to self-select at a higher threshold than they otherwise might (a

simpler Arduino-based system had developers jumping in "too deep" very early, and

required a full-time effort to supervise). In discussing the hardware, antenna design and

power management arose as key concerns, and solutions to these problems were

proposed as the basis of future work. The chapter closed by discussing novel power

saving techniques, utilizing an accelerometer to wake the module and OBDII data to shut

off, and call and response security to provide better-trusted data for applications where

auditability is a concern.

The author successfully proved the design of the CANputer hardware and its

interaction with the database server in creating Avacars. Though not the focus of this

document, the API tested successfully and allowed the development of applications fully

utilizing captured data, and demonstrated the merits of a platform over a set of

applications (namely, simplified development, the ability to recreate existing as well as

new applications, and improved data sharing).

Early-stage applications proved the utility of the platform by solving real-world

problems with demonstrated needs, such as data collection for VMT taxation as described

in the second section, or a cross-manufacturer approach to understanding congestion and

fuel consumption patterns in a geographic context. Other applications described
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incorporated actuation, a novel topic relative to other diagnostic scan tools on the market.

This actuation was the result of emulating dealership- or manufacturer-proprietary

diagnostic tools and spoofing traffic so that the gateway module would retransmit data

from the OBDII network to other CAN, LIN, or MOST networks and is a novel approach

for accessing controls typically unavailable through the diagnostic port.

With these applications available, the author explored a novel category of

application termed "inference applications," which included reactive applications capable

of responding so rapidly a user might identify such an application as predictive, or further

applications capable of making inferences based on the data trends facilitated by the

CloudThink platform. Further development work spans across fields, ranging from

integration with additional automation platforms to improved analytics, or improving

user interaction by providing some form of feedback. Vehicle efficiency, economy, and

comfort may be further improved by leveraging access to the data generated to improve

and optimize control strategy for vehicles, both broadly and in specific use cases.

5.1 Future Work

CloudThink allows developers to create their own new and innovative ideas using

the hundreds of sensors and actuators in vehicles today. These apps build toward next-

generation smart applications, such as car to cloud to car reporting of weather conditions,

Pay-As-You-Go (PAYG) insurance, fuel consumption minimization application, and

feature unlocking of hidden / extra manufacturer features. To accomplish this would

require partnership with auto manufacturers, or community involvement to reverse

engineer and map a Wiki-style database of arbitration ideas.

5.1.1 Embedded Hardware Improvements

Plans include creating one revision of hardware to address power problems by

adding battery level sensing hardware, and a possible return to Bluetooth multiplexing

unless the author finds another way to make GSM/Cloud "Wake on LAN" feasible - as

this currently limits realtiming efforts. Further, an integral PCB antenna would serve to

lower BOM cost as well as improve signal quality while retaining a compact form-factor.

Power supply filtering hardware could be improved at minimal cost and increase the

connectivity duty cycle for devices in the field, and switch-mode power supplies
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optimized for vehicle supply voltages have demonstrated theoretical power savings of

50% relative to the tested embodiment. Integration of additional sensors, such as

gyroscopes and temperature and pressure sensors, may yield richer data at minimal cost

in terms of power and development complexity, when leveraging networks such as SPI or

12C to simplify multi-device connectivity. These and other changes were designed shortly

prior to the submission of this thesis, but remain untested as of this writing.

From an embedded software perspective, it would be ideal to allow variable

sampling rates and a more flexible scheduler to allow sampling at frequencies that more

realistically mirror actual data change rates.

A near-term goal is to build apps that run on the embedded hardware directly,

such as an interrupt-triggered "crash car" black box app is feasible. These apps may work

well outside the scope of CANBus networks, utilizing the hardware's GPIO to control

relays or similar output devices and improve the range of usable actuators.

5.1.2 Next-Generation Application Development

There exists a massive market potential for this platform, so the creation of an

Automotive App Store selling diagnostic or other consumer-facing utilities is likely. The

author has proven CloudThink integration with home automation solutions like the

Belkin WeMo, so a migration from car-centric mirroring to digital mirrors for everything

may not be far off (note: the WeMo does not have an API - tests were cobbled together

through the use of a service called "If This Than That" and reading Tweets sent by a

Python script).13 This technology is easily extensible to other objects that have a pressing

need for digital duplication, so CloudHome, CloudMe, and CloudCity are realistic next-

generation goals.

One cloud-mirroring project of particular interest is the development of a cloud-

based monitoring system for electric vehicle battery packs to provide data based on real

life use cases, to study cell degradation, and to improve drive cycle simulations.

The lack of battery data is a real problem - today, electric vehicles have

proprietary battery management systems and any data logged are stored locally to the

3 http://www.belkin.com/us/wemo htps://ifttt.com/
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vehicle and downloadable only with manufacturer-specific tools [50]. This means it is

nearly impossible to monitor battery pack condition in real use cases, and the lack of a

standardized method of accessing battery data through On-Board Diagnostics means that

users are unable to view their own data at home. This causes problems, as vehicles are

not often brought to dealerships for service - and major performance problems could go

unnoticed, or at the very least, useful information about cell performance and pack design

is lost. By creating a cloud-based platform to visualize battery data, it becomes possible

to improve battery designs, to predict failures, and to update battery management system

firmware before a problem occurs. This rich dataset may be used in conjunction with

novel programming techniques to optimize battery pack configuration and control

strategies similar to the dynamic programming techniques described by Dylan Erb's

"Optimization of Blended Battery Packs" [50]. With the incorporation of three-

dimensional location data and traffic data, it becomes possible to drive innovative

control strategies based on vehicle context. The "omniscience" of knowing when

high-impact events, such as large swings in charge or discharge current, help vehicle

control strategies approach the dynamic solution generated in Erb's research.

The proposed research may drive the development of a standard interface to

accessing vehicle battery data, providing useful data in a field where much advancement

is yet to be made. There is much value in this field, and the data are directly applicable to

solving a number of problems faced by industry.
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