MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Analysis of Origami Flasher-Inspired Deployable Structures Through Dynamic and Experimental Modeling

Author(s)
Bai, Jane
Thumbnail
DownloadThesis PDF (4.335Mb)
Advisor
Yang, Maria
Terms of use
In Copyright - Educational Use Permitted Copyright retained by author(s) https://rightsstatements.org/page/InC-EDU/1.0/
Metadata
Show full item record
Abstract
The Origami “flasher” model holds immense engineering promise due to its ability to alternate between a compressed 3-dimensional form and a deployed 2-dimensional form. While zero-thickness mathematical models have been thoroughly covered, dynamic modeling and material exploration are essential for the successful design of finite-thickness models. In this research, the mathematical effects of parameters such as center polygon size, unit panel length, and crease arrangement on flasher surface area optimization are first established. Software is then used to create a dynamic model that combines kinematic analysis with material properties to visualize the folding geometry and internal strain of the flasher pattern and to identify points of analysis for the experimental model. Finally, a stored-energy-based deployable experimental model is made using Yupo paper and video analysis done to understand damping behavior, deployment trajectory, and torque distribution. A discussion on design considerations for flasher patterns follows and potential topics for future research are set forth.
Date issued
2024-05
URI
https://hdl.handle.net/1721.1/156648
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology

Collections
  • Undergraduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.