MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Learning Diffusion Models to Enable Efficient Sampling for Task and Motion Planning on a Panda Robot

Author(s)
Johnson, Quincy
Thumbnail
DownloadThesis PDF (5.057Mb)
Advisor
Kaelbling, Leslie
Mendez-Mendez, Jorge
Terms of use
In Copyright - Educational Use Permitted Copyright retained by author(s) https://rightsstatements.org/page/InC-EDU/1.0/
Metadata
Show full item record
Abstract
A search then sample approach to bilevel planning in the context of task and motion planning is one method of effectively solving multi-step robotics problems. In this planning framework, high-level plans of abstract actions are refined into low-level continuous transitions by sampling controller parameters associated with each action. Efficiently sampling these parameters remains a significant challenge, as exhaustive searches often become computational bottlenecks, especially for tasks requiring complex or multimodal parameter distributions. Moreover, relying on samplers hand-designed by humans is both impractical and limiting. To address these challenges, we propose using diffusion models to learn efficient sampling distributions from demonstrations. By avoiding the limitations of hand-specified and naïve sampling methods, our approach enhances planning efficiency and achieves superior performance across diverse tasks that require learning multimodal parameter distributions to solve successfully.
Date issued
2025-02
URI
https://hdl.handle.net/1721.1/159141
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.