MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Approximations to worst-case data dropping: unmasking failure modes

Author(s)
Huang, Jenny Yijian
Thumbnail
DownloadThesis PDF (921.2Kb)
Advisor
Broderick, Tamara
Terms of use
In Copyright - Educational Use Permitted Copyright retained by author(s) https://rightsstatements.org/page/InC-EDU/1.0/
Metadata
Show full item record
Abstract
A data analyst might worry about generalization if dropping a very small fraction of data points from a study could change its substantive conclusions. Checking this non-robustness directly poses a combinatorial optimization problem and is intractable even for simple models and moderate data sizes. Recently various authors have proposed a diverse set of approximations to detect this non-robustness. In the present work, we show that, even in a setting as simple as ordinary least squares (OLS) linear regression, many of these approximations can fail to detect (true) non-robustness in realistic data arrangements. We focus on OLS in the present work due its widespread use and since some approximations work only for OLS. Of the approximations that do not fail our tests, we find not only that a simple recursive greedy algorithm is the most conceptually straightforward but also that it can be orders of magnitude faster to run than the others.
Date issued
2025-05
URI
https://hdl.handle.net/1721.1/163699
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.