MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Evaluating Differences in GPT-4 Treatment by Gender in Healthcare Applications

Author(s)
Pan, Eileen
Thumbnail
DownloadThesis PDF (1.933Mb)
Advisor
Ghassemi, Marzyeh
Terms of use
In Copyright - Educational Use Permitted Copyright retained by author(s) https://rightsstatements.org/page/InC-EDU/1.0/
Metadata
Show full item record
Abstract
LLMs already permeate medical settings, supporting patient messaging, medical scribing, and chatbots. While prior work has examined bias in medical LLMs, few studies focus on realistic use cases or analyze the source of the bias. To assess whether medical LLMs exhibit differential performance by gender, we audit their responses and investigate whether the disparities stem from implicit or explicit gender cues. We conduct a large-scale human evaluation of GPT-4 responses to medical questions, including counterfactual gender pairs for each question. Our findings reveal differential treatment based on the original patient gender. Specifically, responses for women more often recommend supportive resources, while those for men advise emergency care. Additionally, LLMs tend to downplay medical urgency for female patients and escalate it for male patients. Given rising interest in “LLM-as-a-judge” approaches, we also evaluate whether LLMs can serve as a proxy for human annotators in identifying disparities. We find that LLM-generated annotations diverge from human assessments in heterogeneous ways, particularly regarding error detection and relative urgency.
Date issued
2025-05
URI
https://hdl.handle.net/1721.1/163716
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.