MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

On Counting Substructures with Graph Neural Networks

Author(s)
Tahmasebi, Behrooz
Thumbnail
DownloadThesis PDF (569Kb)
Advisor
Jegelka, Stefanie
Terms of use
In Copyright - Educational Use Permitted Copyright retained by author(s) https://rightsstatements.org/page/InC-EDU/1.0/
Metadata
Show full item record
Abstract
To achieve a graph representation, most Graph Neural Networks (GNNs) follow two steps: first, each graph is decomposed into a number of subgraphs (which we call the recursion step), and then the collection of subgraphs is encoded by several iterative pooling steps. While recently proposed higher-order networks show a remarkable increase in the expressive power through a single recursion on larger neighborhoods followed by iterative pooling, the power of deeper recursion in GNNs without any iterative pooling is still not fully understood. To make it concrete, we consider a pure recursion-based GNN which we call Recursive Neighborhood Pooling GNN (RNPGNN). The expressive power of an RNP-GNN and its computational cost quantifies the power of (pure) recursion for a graph representation network. We quantify the power by means of counting substructures, which is one main limitation of the Message Passing graph Neural Networks (MPNNs), and show how RNP-GNN can exploit the sparsity of the underlying graph to achieve low-cost powerful representations. We also compare the recent lower bounds on the time complexity and show how recursion-based networks are near optimal.
Date issued
2025-05
URI
https://hdl.handle.net/1721.1/163728
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.