MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Reducing Solvent Consumption in Reductive Catalytic Fractionation through Lignin Oil Recycling

Author(s)
Jang, Jun Hee; Callejón Álvarez, Júlia; Neuendorf, Quinn S; Román-Leshkov, Yuriy; Beckham, Gregg T
Thumbnail
DownloadPublished version (4.356Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Reductive catalytic fractionation (RCF) enables the simultaneous valorization of lignin and carbohydrates in lignocellulosic biomass through solvent-based lignin extraction, followed by depolymerization and catalytic stabilization of the extracted lignin. Process modeling has shown that the use of exogenous organic solvent in RCF is a challenge for economic and environmental feasibility, and previous works proposed that lignin oil, a mixture of lignin-derived monomers and oligomers produced by RCF, can be used as a cosolvent in RCF. Here, we further explore the potential of RCF solvent recycling with lignin oil, extending the feasible lignin oil concentration in the solvent to 100 wt %, relative to the previously demonstrated 0-19 wt % range. Solvents containing up to 80 wt % lignin oil exhibited 83-93% delignification, comparable to 83% delignification with a methanol-water mixture, and notably, using lignin oil solely as a solvent achieved 67% delignification in the absence of water. In additional experiments, applying the RCF solvent recycling approach to ten consecutive RCF reactions resulted in a final lignin oil concentration of 11 wt %, without detrimental impacts on lignin extraction, lignin oil molar mass distribution, aromatic monomer selectivity, and cellulose retention. Overall, this work further demonstrates the potential for using lignin oil as an effective cosolvent in RCF, which can reduce the burden on downstream solvent recovery.
Date issued
2024-08-14
URI
https://hdl.handle.net/1721.1/164086
Department
Massachusetts Institute of Technology. Department of Chemical Engineering
Journal
ACS Sustainable Chemistry & Engineering
Publisher
American Chemical Society
Citation
Jun Hee Jang, Júlia Callejón Álvarez, Quinn S. Neuendorf, Yuriy Román-Leshkov, and Gregg T. Beckham ACS Sustainable Chemistry & Engineering 2024. 12 (34), 12919-12926.
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.