Show simple item record

dc.contributor.authorHu, Liting
dc.contributor.authorHu, Xiaoyi
dc.contributor.authorJiang, Fei
dc.contributor.authorHe, Wei
dc.contributor.authorDeng, Zhu
dc.contributor.authorFang, Shuangxi
dc.contributor.authorFang, Xuekun
dc.date.accessioned2025-12-01T16:00:42Z
dc.date.available2025-12-01T16:00:42Z
dc.date.issued2025-11-13
dc.identifier.urihttps://hdl.handle.net/1721.1/164093
dc.description.abstractUnderstanding the dynamics of terrestrial carbon sources and sinks is crucial for addressing climate change, yet significant uncertainties remain at regional scales. We developed the Monitoring and Evaluation of Greenhouse gAs Flux (MEGA) inversion system with satellite data assimilation and applied it to China using OCO-2 V11.1r XCO2 retrievals. Our results show that China’s terrestrial ecosystems acted as a carbon sink of 0.28 ± 0.15 PgC yr−1 during 2018–2023, consistent with other inversion estimates. Validation against surface CO2 flask measurements demonstrated significant improvement, with RMSE and MAE reduced by 30%–46% and 24–44%, respectively. Six sets of prior sensitivity experiments conclusively demonstrated the robustness of MEGA. In addition, this study is the first to systematically compare model-derived and observation-based background fields in satellite data assimilation. Ten sets of background sensitivity experiments revealed that model-based background fields exhibit superior capability in resolving seasonal flux dynamics, though their performance remains contingent on three key factors: (1) initial fields, (2) flux fields, and (3) flux masks (used to control regional flux switches). These findings highlight the potential for further refinement of the atmospheric inversion system.en_US
dc.language.isoen
dc.publisherMultidisciplinary Digital Publishing Instituteen_US
dc.relation.isversionofhttps://doi.org/10.3390/rs17223720en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceMultidisciplinary Digital Publishing Instituteen_US
dc.titleAnalysis of Regional Surface CO2 Fluxes Using the MEGA Satellite Data Assimilation Systemen_US
dc.typeArticleen_US
dc.identifier.citationHu, L., Hu, X., Jiang, F., He, W., Deng, Z., Fang, S., & Fang, X. (2025). Analysis of Regional Surface CO2 Fluxes Using the MEGA Satellite Data Assimilation System. Remote Sensing, 17(22), 3720.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Center for Global Change Scienceen_US
dc.relation.journalRemote Sensingen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2025-11-26T18:40:49Z
dspace.orderedauthorsHu, L; Hu, X; Jiang, F; He, W; Deng, Z; Fang, S; Fang, Xen_US
dspace.date.submission2025-11-26T18:40:50Z
mit.journal.volume17en_US
mit.journal.issue22en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record