MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Machine Learning Distinguishes Plant Bioelectric Recordings with and Without Nearby Human Movement

Author(s)
Gloor, Peter A.; Weinbeer, Moritz
Thumbnail
Downloadbiomimetics-10-00776-v2.pdf (7.379Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Background: Quantitatively detecting whether plants exhibit measurable bioelectric differences in the presence of nearby human movement remains challenging, in part because plant signals are low-amplitude, slow, and easily confounded by environmental factors. Methods: We recorded bioelectric activity from 2978 plant samples across three species (basil, salad, tomato) using differential electrode pairs (leaf and soil electrodes) sampling at 142 Hz. Two trained performers executed three specific eurythmic gestures near experimental plants while control plants remained isolated. Random Forest and Convolutional Neural Network classifiers were applied to distinguish the control from treatment conditions using engineered features including spectral, temporal, wavelet, and frequency domain characteristics. Results: Random Forest classification achieved 62.7% accuracy (AUC = 0.67) distinguishing differences in recordings collected near a moving human from control conditions, representing a statistically significant 12.7 percentage point improvement over chance. Individual performer signatures were detectable with 68.2% accuracy, while plant species classification achieved only 44.5% accuracy, indicating minimal species-specific artifacts. Temporal analysis revealed that the plants with repeated exposure exhibited consistently less negative bioelectric amplitudes compared to single-exposure plants. Innovation: We introduce a data-driven approach that pairs standardized, short-window bioelectric recordings with machine-learning classifiers (Random Forest, CNN) to test, in an exploratory manner, whether plant signals differ between human-moving-nearby and isolation conditions. Conclusions: Plants exhibit modest but statistically detectable bioelectric differences in the presence of nearby human movement. Rather than attributing these differences to eurythmic movement itself, the present design can only demonstrate that plant recordings collected within ~1 m of a moving human differ, modestly but statistically, from recordings taken ≥3 m away. The underlying biophysical pathways and specific contributing factors (airflow, VOCs, thermal plumes, vibration, electromagnetic fields) remain unknown. These results should therefore be interpreted as exploratory correlations, not mechanistic evidence of gesture-specific plant sensing.
Date issued
2025-11-15
URI
https://hdl.handle.net/1721.1/164094
Department
System Design and Management Program.
Journal
Biomimetics
Publisher
Multidisciplinary Digital Publishing Institute
Citation
Gloor, P. A., & Weinbeer, M. (2025). Machine Learning Distinguishes Plant Bioelectric Recordings with and Without Nearby Human Movement. Biomimetics, 10(11), 776.
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.