MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Deep-learning models for forecasting financial risk premia and their interpretations

Author(s)
Lo, Andrew W; Singh, Manish
Thumbnail
DownloadPublished version (1.674Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
The measurement of financial risk premia, the amount that a risky asset will outperform a risk-free one, is an important problem in asset pricing. The noisiness and non-stationarity of asset returns makes the estimation of risk premia using machine learning (ML) techniques challenging. In this work, we develop ML models that solve the problems associated with risk premia forecasting by separating risk premia prediction into two independent tasks, a time series model and a cross-sectional model, and using neural networks with skip connections to enable their deep neural network training. These models are tested robustly with different metrics, and we observe that our models outperform several existing standard ML models. A known issue with ML models is their ‘black box’ nature, i.e. their opaqueness to interpretability. We interpret these deep neural networks using local approximation-based techniques that provide explanations for our model's predictions.
Date issued
2023-05-12
URI
https://hdl.handle.net/1721.1/164095
Department
Sloan School of Management; Sloan School of Management. Laboratory for Financial Engineering; Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
Quantitative Finance
Publisher
Taylor & Francis
Citation
Lo, A. W., & Singh, M. (2023). Deep-learning models for forecasting financial risk premia and their interpretations. Quantitative Finance, 23(6), 917–929.
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.