Show simple item record

dc.contributor.advisorLippman, Andrew B.
dc.contributor.authorAgarwal, Gauri
dc.date.accessioned2025-12-03T16:09:52Z
dc.date.available2025-12-03T16:09:52Z
dc.date.issued2025-05
dc.date.submitted2025-09-21T19:39:55.475Z
dc.identifier.urihttps://hdl.handle.net/1721.1/164132
dc.description.abstractUnderstanding the ripple effects of events—both real and speculative—is essential for navigating complex futures. Large Language Models (LLMs) have emerged as powerful tools that offer a user-friendly and narrative experience for question answering and reasoning across large corpuses of unstructured data [15, 96]. While LLMs can respond to complex ‘what-if’ questions, they typically provide single, unverifiable answers. Even with retrievalaugmented generation (RAG) that grounds LLM responses on external sources, the opacity of reasoning pathways undermines trust in model outputs [97]. Next Week Tonight builds on the narrative and reasoning capability of LLMs further by enhancing the exploration of what-if futures and making it more transparent and evidencebased. NWT exposes the underlying knowledge graph, allowing users to inspect inference pathways directly. This also enables the generation of multiple, diverse scenarios from a single condition—each following different but explainable causal chains. In testing 15 counterfactual prompts that span diverse news topics, NWT produced scenario narratives that were rated as significantly more causally coherent, transparent, and easier to audit than standard chat completions. Beyond technical performance, NWT reinvents scenario planning as an interactive narrative experience - encouraging curiosity, critical thinking, and deeper engagement with the complexities of future events. By surfacing not only what could happen but why and how, NWT aims to empower analysts, policymakers, and the public to navigate uncertainty with greater clarity and confidence. Github: https://github.com/viral-medialab/next-week-tonight
dc.publisherMassachusetts Institute of Technology
dc.rightsIn Copyright - Educational Use Permitted
dc.rightsCopyright retained by author(s)
dc.rights.urihttps://rightsstatements.org/page/InC-EDU/1.0/
dc.titleNext Week Tonight: Simulating Counterfactual Narratives of the future using Agentic Knowledge Graphs
dc.typeThesis
dc.description.degreeS.M.
dc.contributor.departmentProgram in Media Arts and Sciences (Massachusetts Institute of Technology)
mit.thesis.degreeMaster
thesis.degree.nameMaster of Science in Media Arts and Sciences


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record