MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Sampling Methods for Fast and Versatile GNN Training

Author(s)
Alkhatib, Obada
Thumbnail
DownloadThesis PDF (3.723Mb)
Advisor
Leiserson, Charles E.
Kaler, Timothy
Iliopoulos, Alexandros-Stavros
Terms of use
In Copyright - Educational Use Permitted Copyright MIT http://rightsstatements.org/page/InC-EDU/1.0/
Metadata
Show full item record
Abstract
Graph neural networks (GNNs) have become a commonly used class of machine learning models that achieve state-of-the-art performance in various applications. A prevalent and effective approach for applying GNNs on large datasets involves mini-batch training with sampled neighborhoods. Numerous sampling algorithms have emerged, some tailored for specific GNN applications. In this thesis, I explore ways to improve the efficiency and expressivity of existing and emerging sampling schemes. First, I explore system solutions to facilitate the development of fast implementations of different sampling methods. I introduce FlexSample, a system for efficiently incorporating custom sampling algorithms into GNN training. FlexSample leverages the types of performance optimizations found in SALIENT, a state-of-the-art system for fast training of GNNs with node-wise sampling. In experiments with 4 GNN models which use layer-wise and subgraph sampling, FlexSample achieves up to 1.3× speed-up for end-to-end training over PyTorch Geometric with the same sampling code. Furthermore, FlexSample extends SALIENT with highly-optimized C++ implementations of FastGCN and LADIES layer-wise sampling, which achieve 2×–5× speed-up over their respective Python implementations. Second, I introduce a novel framework for learning neighbor sampling distributions as part of GNN training. Key components of this framework, which I name PertinenceSample, are: (i) a differentiable approximation of node-wise sampling for GNNs; and (ii) a parametrization of node sampling distributions as node- or edge-wise weights of attention-like GNN layers. I present an initial exploration of the potential of PertinenceSample for improving node classification accuracy in the presence of noisy edges. Specifically, in two synthetic experiments where roughly half of a node’s neighbors may have similar features but different labels, I demonstrate that extending a GraphSAGE model with a 2-layer perceptron for learning the PertinenceSample weights can improve classification accuracy from 50%–75% to (nearly) 100%.
Date issued
2022-09
URI
https://hdl.handle.net/1721.1/164495
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.