MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

LumiModeling: A Gaussian Splatting-Based Tool for Recreating Dynamic Material and Lighting Interaction in Architecture

Author(s)
Cao, Biru
Thumbnail
DownloadThesis PDF (34.71Mb)
Advisor
Nagakura, Takehiko
Terms of use
In Copyright - Educational Use Permitted Copyright retained by author(s) https://rightsstatements.org/page/InC-EDU/1.0/
Metadata
Show full item record
Abstract
This thesis presents LumiModeling, a real-time visualization tool based on Gaussian Splatting (GS) that simulates the dynamic interplay between materiality and lighting in architectural environments. While conventional design workflows rely on geometric modeling and photorealistic rendering, they often abstract complex material behaviors and fall short in capturing light-material interactions. In contrast, GS enables the reconstruction of high-fidelity 3D models from 2D image sets, representing viewdependent effects such as reflection, transparency, and surface roughness. A comparative analysis using real-world data from the MIT Stata Center and the Met Warehouse demonstrates GS’s advantages over mesh-based photogrammetry, particularly in rendering reflective and transparent materials. This work extends existing GS capabilities by implementing a relightable pipeline based on the existing model Relightable3DGaussian (Gao et al., 2023), in which each Gaussian point is augmented with physical parameters, including BRDF, surface normals, and incident lighting. The Stata Center dataset is used to test the relighting of GS. A user study involving architecture professionals reveals that perceptual focus shifts from geometry to materiality and lighting as visual realism increases. The findings highlight the potential of relightable GS in architectural visualization and anticipate its integration into future design workflows.
Date issued
2025-09
URI
https://hdl.handle.net/1721.1/164588
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Massachusetts Institute of Technology. Department of Architecture
Publisher
Massachusetts Institute of Technology

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.