MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Singapore-MIT Alliance (SMA)
  • Innovation in Manufacturing Systems and Technology (IMST)
  • View Item
  • DSpace@MIT Home
  • Singapore-MIT Alliance (SMA)
  • Innovation in Manufacturing Systems and Technology (IMST)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Mechanical Model for Erosion in Copper Chemical-Mechanical Polishing

Author(s)
Noh, Kyungyoon; Saka, Nannaji; Chun, Jung-Hoon
Thumbnail
DownloadIMST012.pdf (671.9Kb)
Metadata
Show full item record
Abstract
The Chemical-mechanical polishing (CMP) process is now widely employed in the ultralarge scale integration chip fabrication. Due to the continuous advances in semiconductor fabrication technology and decreasing sub-micron feature size, the characterization of erosion, which affects circuit performance and manufacturing throughput, has been an important issue in Cu CMP. In this paper, the erosion in Cu CMP is divided into two levels. The wafer-level and die-level erosion models were developed based on the material removal rates and the geometry of incoming wafers to the Cu CMP process, including the Cu interconnect area fraction, linewidth and Cu deposition thickness. Experiments were conducted to obtain the selectivity values between the Cu, barrier layer and dielectric, and the values of within-wafer material removal rate ratio, β, for the validation of the new erosion model. It was compared with the existing models and was found to agree better with the experimental data.
Date issued
2003-01
URI
http://hdl.handle.net/1721.1/3746
Series/Report no.
Innovation in Manufacturing Systems and Technology (IMST);
Keywords
chemical mechanical polishing, erosion, semi-conductor manufacturing

Collections
  • Innovation in Manufacturing Systems and Technology (IMST)

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.