MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Singapore-MIT Alliance (SMA)
  • Computer Science (CS)
  • View Item
  • DSpace@MIT Home
  • Singapore-MIT Alliance (SMA)
  • Computer Science (CS)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Data Prefetching via Off-line Learning

Author(s)
Wong, Weng Fai
Thumbnail
DownloadCS005.pdf (11.43Kb)
Metadata
Show full item record
Abstract
The widely acknowledged performance gap between processors and memory has been the subject of much research. In the Explicitly Parallel Instruction Computing (EPIC) paradigm, the combination of in-order issue and the presence of a large number of parallel function units has further worsen the problem. Prefetching, by hardware, software or a combination of both, has been one of the primary mechanisms to alleviate this problem. In this talk, we will discuss two prefetching mechanisms, one hardware and other software, suitable for implementation in EPIC processors. Both methods rely on the off-line learning of Markovian predictors. In the hardware mechanism, the predictors are loaded into a table that is used by a prefetch engine. We have shown that the method is particularly effective for prefetching into the L2 cache. Our software mechanism which we called predicated prefetch leverages on informing loads. This is used in conjunction with data remapping and offline learning of Markovian predictors. This distinguishes our approach from early software prefetching techniques that only involves static program analysis. Our experiments show that this framework, together with the algorithms used in it, can effectively remove, in the best instance, 30% of the stall cycles due to cache misses. The results also show that the framework performs better than pure hardware stride predictors and has lower bandwidth and instruction overheads than that of pure software approaches.
Date issued
2003-01
URI
http://hdl.handle.net/1721.1/3759
Series/Report no.
Computer Science (CS);
Keywords
Explicitly Parallel Instruction Computing, prefetching, Markovian predictors, EPIC processors, data remapping

Collections
  • Computer Science (CS)

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.