MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Singapore-MIT Alliance (SMA)
  • Computer Science (CS)
  • View Item
  • DSpace@MIT Home
  • Singapore-MIT Alliance (SMA)
  • Computer Science (CS)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Abnormality Detection in Retinal Images

Author(s)
Yu, Xiaoxue; Hsu, Wynne; Lee, Wee Sun; Lozano-Pérez, Tomás
Thumbnail
DownloadCS001.pdf (267.5Kb)
Metadata
Show full item record
Abstract
The implementation of data mining techniques in the medical area has generated great interest because of its potential for more efficient, economic and robust performance when compared to physicians. In this paper, we focus on the implementation of Multiple-Instance Learning (MIL) in the area of medical image mining, particularly to hard exudates detection in retinal images from diabetic patients. Our proposed approach deals with the highly noisy images that are common in the medical area, improving the detection specificity while keeping the sensitivity as high as possible. We have also investigated the effect of feature selection on system performance. We describe how we implement the idea of MIL on the problem of retinal image mining, discuss the issues that are characteristic of retinal images as well as issues common to other medical image mining problems, and report the results of initial experiments.
Date issued
2004-01
URI
http://hdl.handle.net/1721.1/3845
Series/Report no.
Computer Science (CS);
Keywords
data mining, abnormality detection, multiple-instance learning, medical image mining

Collections
  • Computer Science (CS)

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.