MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Singapore-MIT Alliance (SMA)
  • Computer Science (CS)
  • View Item
  • DSpace@MIT Home
  • Singapore-MIT Alliance (SMA)
  • Computer Science (CS)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Automated Information Extraction to Support Biomedical Decision Model Construction: A Preliminary Design

Author(s)
Li, Xiaoli; Leong, Tze Yun
Thumbnail
DownloadCS010.pdf (122.3Kb)
Metadata
Show full item record
Abstract
We propose an information extraction framework to support automated construction of decision models in biomedicine. Our proposed technique classifies text-based documents from a large biomedical literature repository, e.g., MEDLINE, into predefined categories, and identifies important keywords for each category based on their discriminative power. Relevant documents for each category are retrieved based on the keywords, and a classification algorithm is developed based on machine learning techniques to build the final classifier. We apply the HITS algorithm to select the authoritative and typical documents within a category, and construct templates in the form of Bayesian networks. Data mining and information extraction techniques are then applied to extract the necessary semantic knowledge to fill in the templates to construct the final decision models.
Date issued
2004-01
URI
http://hdl.handle.net/1721.1/3852
Series/Report no.
Computer Science (CS);
Keywords
data mining, decision model, information extraction

Collections
  • Computer Science (CS)

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.