MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Singapore-MIT Alliance (SMA)
  • High Performance Computation for Engineered Systems (HPCES)
  • View Item
  • DSpace@MIT Home
  • Singapore-MIT Alliance (SMA)
  • High Performance Computation for Engineered Systems (HPCES)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Certified Rapid Solution of Parametrized Linear Elliptic Equations: Application to Parameter Estimation

Author(s)
Nguyen, N. C.; Liu, Guirong; Patera, Anthony T.
Thumbnail
DownloadHPCES001.pdf (1.065Mb)
Metadata
Show full item record
Abstract
We present a technique for the rapid and reliable evaluation of linear-functional output of elliptic partial differential equations with affine parameter dependence. The essential components are (i) rapidly uniformly convergent reduced-basis approximations — Galerkin projection onto a space WN spanned by solutions of the governing partial differential equation at N (optimally) selected points in parameter space; (ii) a posteriori error estimation — relaxations of the residual equation that provide inexpensive yet sharp and rigorous bounds for the error in the outputs; and (iii) offline/online computational procedures — stratagems that exploit affine parameter dependence to de-couple the generation and projection stages of the approximation process. The operation count for the online stage — in which, given a new parameter value, we calculate the output and associated error bound — depends only on N (typically small) and the parametric complexity of the problem. The method is thus ideally suited to the many-query and real-time contexts. In this paper, based on the technique we develop a robust inverse computational method for very fast solution of inverse problems characterized by parametrized partial differential equations. The essential ideas are in three-fold: first, we apply the technique to the forward problem for the rapid certified evaluation of PDE input-output relations and associated rigorous error bounds; second, we incorporate the reduced-basis approximation and error bounds into the inverse problem formulation; and third, rather than regularize the goodness-of-fit objective, we may instead identify all (or almost all, in the probabilistic sense) system configurations consistent with the available experimental data — well-posedness is reflected in a bounded "possibility region" that furthermore shrinks as the experimental error is decreased.
Date issued
2005-01
URI
http://hdl.handle.net/1721.1/7375
Series/Report no.
High Performance Computation for Engineered Systems (HPCES);
Keywords
Linear elliptic equations, Reduced-basis method, Reduced-basis approximation, A posteriori error estimation, Parameter estimation, Inverse computational method, Possibility region

Collections
  • High Performance Computation for Engineered Systems (HPCES)

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.