MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Research Laboratory for Electronics (RLE)
  • RLE Technical Reports
  • View Item
  • DSpace@MIT Home
  • Research Laboratory for Electronics (RLE)
  • RLE Technical Reports
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Thermal Noise Behavior of the Bridge Circuit

Author(s)
Coram, Geoffrey J.; Anderson, Brian D.O.; Wyatt, John L.
Thumbnail
DownloadTR634.pdf (536.6Kb)
Metadata
Show full item record
Abstract
This paper considers a connection between the deterministic and noisy behavior of nonlinear networks. Specifically, a particular bridge circuit is examined which has two possibly nonlinear energy storage elements. By proper choice of the constitutive relations for the network elements, the deterministic terminal behavior reduces to that of a single linear resistor. This reduction of the deterministic terminal behavior, in which a natural frequency of a linear circuit does not appear in the driving-point impedance, has been shown in classical circuit theory books (e.g. [1, 2]). The paper shows that, in addition to the reduction of the deterministic behavior, the thermal noise at the terminals of the network, arising from the usual Nyquist-Johnson noise model associated with each resistor in the network, is also exactly that of a single linear resistor. While this result for the linear time-invariant (LTI) case is a direct consequence of a well-known result for RLC circuits, the nonlinear result is novel. We show that the terminal noise current is precisely that predicted by the Nyquist-Johnson model for R if the driving voltage is zero or constant, but not if the driving voltage is time-dependent or the inductor and capacitor are time-varying
Date issued
2000-02-18
URI
http://hdl.handle.net/1721.1/7513
Series/Report no.
Technical Report (Massachusetts Institute of Technology, Research Laboratory of Electronics);634

Collections
  • RLE Technical Reports

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.