Show simple item record

dc.contributor.authorCasey, D.T.en_US
dc.contributor.authorLanden, O.L.en_US
dc.contributor.authorHartouni, E.en_US
dc.contributor.authorBionta, R.M.en_US
dc.contributor.authorHahn, K.D.en_US
dc.contributor.authorVolegov, P.L.en_US
dc.contributor.authorFittinghoff, D.N.en_US
dc.contributor.authorGeppert-Kleinrath, V.en_US
dc.contributor.authorWilde, C.H.en_US
dc.contributor.authorMilovich, C.H.en_US
dc.contributor.authorSmalyuk, V.A.en_US
dc.contributor.authorField, J.E.en_US
dc.contributor.authorHurricane, O.A.en_US
dc.contributor.authorZylstra, A.B.en_US
dc.contributor.authorKritcher, A.L.en_US
dc.contributor.authorClark, D.S.en_US
dc.contributor.authorYoung, C.V.en_US
dc.contributor.authorNora, R.C.en_US
dc.contributor.authorCallahan, D.A.en_US
dc.contributor.authorMacGowan, B.J.en_US
dc.contributor.authorMunro, D.H.en_US
dc.contributor.authorSpears, B.K.en_US
dc.contributor.authorPeterson, J.L.en_US
dc.contributor.authorGaffney, J.A.en_US
dc.contributor.authorHumbird, K.D.en_US
dc.contributor.authorKruse, M.K.G.en_US
dc.contributor.authorMoore, A.S.en_US
dc.contributor.authorSchlossberg, D.J.en_US
dc.contributor.authorGatu Johnson, Mariaen_US
dc.contributor.authorFrenje, Johan A.en_US
dc.date.accessioned2025-03-21T20:25:07Z
dc.date.available2025-03-21T20:25:07Z
dc.date.issued2021-01
dc.identifier21ja010
dc.identifier.urihttps://hdl.handle.net/1721.1/158764
dc.descriptionSubmitted for publication in Physics of Plasmas
dc.description.abstractTo achieve hotspot ignition, an inertial confinement fusion (ICF) implosion must achieve high hotspot pressure that is inertially confined by a dense shell of DT fuel. This requires a symmetric implosion having high in-flight shell velocity and high areal density at stagnation. The size of the driver and scale of the capsule required can be minimized by maintaining a high efficiency of energy coupling from the imploding shell to the hotspot. Significant 3D low mode asymmetries, however, are commonly observed in indirect-drive implosions and reduce the coupling of shell kinetic energy to the hotspot. To better quantify the magnitudes and impacts of shell density asymmetries, we have developed new analysis techniques and analytic models [Hurricane et. al., Physics of Plasmas 27 (6), 062704 (2020)]. To build confidence in the underlying data, we have also developed an analytic neutron transport model to cross-compare two independent measurements of asymmetry, which shows excellent agreement across shots for mode-1 (l=1). This work also demonstrates that asymmetry can introduce potential sampling bias into down-scattered ratio measurements causing the solid-angle-average and uncertainty-weighted-average down-scattered ratios to differ significantly. Diagnosing asymmetries beyond mode-1 (l>1) presents significant challenges. Using new diagnostic instruments and analysis techniques, however, evidence of significant Legendre mode P2 (l=2, m=0) and additional 3D asymmetries (l>1, m≠0) are beginning to emerge from the high precision activation diagnostic data (RTNADs) and down-scattered neutron imaging data.
dc.publisherAIPen_US
dc.relation.isversionofdoi.org/10.1063/5.0043589
dc.sourcePlasma Science and Fusion Centeren_US
dc.titleThree dimensional low-mode areal-density non-uniformities in indirect-drive implosions at the National Ignition Facilityen_US
dc.typeArticleen_US
dc.contributor.departmentMassachusetts Institute of Technology. Plasma Science and Fusion Center
dc.relation.journalPhysics of Plasmas


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record