Show simple item record

dc.contributor.authorMeinecke, J.en_US
dc.contributor.authorTzeferacos, P.en_US
dc.contributor.authorRoss, J.S.en_US
dc.contributor.authorBott, A.F.A.en_US
dc.contributor.authorFeister, S.en_US
dc.contributor.authorPark, H.-S.en_US
dc.contributor.authorBell, A.R.en_US
dc.contributor.authorBlandford, R.en_US
dc.contributor.authorBerger, R.L.en_US
dc.contributor.authorBingham, R.en_US
dc.contributor.authorCasner, A.en_US
dc.contributor.authorChen, L.E.en_US
dc.contributor.authorFoster, J.en_US
dc.contributor.authorFroula, D.H.en_US
dc.contributor.authorGoyon, C.en_US
dc.contributor.authorKalantar, D.en_US
dc.contributor.authorKoenig, M.en_US
dc.contributor.authorLahmann, Brandonen_US
dc.contributor.authorLi, Chi-Kangen_US
dc.contributor.authorLu, Y.en_US
dc.contributor.authorPalmer, C.A.J.en_US
dc.contributor.authorPetrasso, Richard D.en_US
dc.contributor.authorPoole, H.en_US
dc.contributor.authorRemington, B.en_US
dc.contributor.authorReville, B.en_US
dc.contributor.authorReyes, A.en_US
dc.contributor.authorRigby, A.en_US
dc.contributor.authorRyu, D.en_US
dc.contributor.authorSwadling, G.en_US
dc.contributor.authorZylstra, A.en_US
dc.contributor.authorMiniati, F.en_US
dc.contributor.authorSarkar, S.en_US
dc.contributor.authorSchekochihin, A.A.en_US
dc.contributor.authorLamb, D.Q.en_US
dc.contributor.authorGregori, G.en_US
dc.date.accessioned2025-03-21T20:26:13Z
dc.date.available2025-03-21T20:26:13Z
dc.date.issued2021-05
dc.identifier21ja109
dc.identifier.urihttps://hdl.handle.net/1721.1/158781
dc.descriptionSubmitted for publication in Science Advances
dc.description.abstractIn conventional gases and plasmas, it is known that heat fluxes are proportional to temperature gradients, with collisions between particles mediating energy flow from hotter to colder regions and the coefficient of thermal conduction given by Spitzer’s theory. However, this theory breaks down in magnetized, turbulent, weakly colli- sional plasmas, although modifications are difficult to predict from first principles due to the complex, multiscale nature of the problem. Understanding heat transport is important in astrophysical plasmas such as those in gal- axy clusters, where observed temperature profiles are explicable only in the presence of a strong suppression of heat conduction compared to Spitzer’s theory. To address this problem, we have created a replica of such a sys- tem in a laser laboratory experiment. Our data show a reduction of heat transport by two orders of magnitude or more, leading to large temperature variations on small spatial scales (as is seen in cluster plasmas).
dc.publisherScienceen_US
dc.relation.isversionofdoi.org/10.1126/sciadv.abj6799
dc.sourcePlasma Science and Fusion Centeren_US
dc.titleStrong suppression of heat conduction in a laboratory replica of galaxy-cluster turbulent plasmasen_US
dc.typeArticleen_US
dc.contributor.departmentMassachusetts Institute of Technology. Plasma Science and Fusion Center
dc.relation.journalScience Advances


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record