MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

System-Technology Co-Optimization of Scaled Electronics Based on Two-Dimensional Materials

Author(s)
Zhu, Jiadi
Thumbnail
DownloadThesis PDF (9.500Mb)
Advisor
Palacios, Tomás
Terms of use
In Copyright - Educational Use Permitted Copyright retained by author(s) https://rightsstatements.org/page/InC-EDU/1.0/
Metadata
Show full item record
Abstract
Over the past 60 years, the semiconductor industry has focused on developing highly scaled electronic devices and high-density integrated circuits. However, bottlenecks have arisen recently as transistor dimensions approach the physical limits, and integration density is constrained. This thesis addresses these issues with two-dimensional (2D) materials, which includes inventing a low-temperature (< 300 °C) metal-organic chemical vapor deposition (MOCVD) method for 2D materials on 8-inch wafers, investigating extreme device scaling and multi-channel transistors. Design-Technology Co-Optimization (DTCO) and SystemTechnology Co-Optimization (STCO) are employed to rapidly model, evaluate and optimize device and circuit performance. Moreover, heterogeneous integration and monolithic 3D integration techniques are investigated, addressing challenges in integrating 2D materials with silicon complementary-metal-oxide-semiconductor (CMOS) circuits and flexible substrates. This research aims to advance high-density, high-performance electronics with low-power consumption for next-generation integrated systems.
Date issued
2025-02
URI
https://hdl.handle.net/1721.1/158961
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.