Show simple item record

dc.contributor.authorBoyeau, Pierre
dc.contributor.authorBates, Stephen
dc.contributor.authorErgen, Can
dc.contributor.authorJordan, Michael I.
dc.contributor.authorYosef, Nir
dc.date.accessioned2024-11-18T18:24:23Z
dc.date.available2024-11-18T18:24:23Z
dc.date.issued2024-11-15
dc.identifier.urihttps://hdl.handle.net/1721.1/157562
dc.description.abstractUnveiling functional relationships between various molecular cell phenotypes from data using machine learning models is a key promise of multiomics. Existing methods either use flexible but hard-to-interpret models or simpler, misspecified models. VI-VS (Variational Inference for Variable Selection) balances flexibility and interpretability to identify relevant feature relationships in multiomic data. It uses deep generative models to identify conditionally dependent features, with false discovery rate control. VI-VS is available as an open-source Python package, providing a robust solution to identify features more likely representing genuine causal relationships.en_US
dc.publisherBioMed Centralen_US
dc.relation.isversionof10.1186/s13059-024-03419-zen_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceBioMed Centralen_US
dc.titleVI-VS: calibrated identification of feature dependencies in single-cell multiomicsen_US
dc.typeArticleen_US
dc.identifier.citationBoyeau, P., Bates, S., Ergen, C. et al. VI-VS: calibrated identification of feature dependencies in single-cell multiomics. Genome Biol 25, 294 (2024).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.relation.journalGenome Biologyen_US
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2024-11-17T04:24:22Z
dc.language.rfc3066en
dc.rights.holderThe Author(s)
dspace.date.submission2024-11-17T04:24:21Z
mit.journal.volume25en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record