Show simple item record

dc.contributor.authorBai, Yunwei
dc.contributor.authorCai, Bill Yang
dc.contributor.authorTan, Ying Kiat
dc.contributor.authorZheng, Zangwei
dc.contributor.authorChen, Shiming
dc.contributor.authorChen, Tsuhan
dc.date.accessioned2024-11-19T16:07:11Z
dc.date.available2024-11-19T16:07:11Z
dc.date.issued2024-10-28
dc.identifier.isbn979-8-4007-0686-8
dc.identifier.urihttps://hdl.handle.net/1721.1/157613
dc.descriptionMM ’24, October 28-November 1, 2024, Melbourne, VIC, Australiaen_US
dc.description.abstractFew-shot learning (FSL) usually trains models on data from one set of classes, but tests them on data from a different set of classes, providing a few labeled support samples of the unseen classes as a reference for the trained model. Due to the lack of target-relevant training data, there is usually high generalization error with respect to the test classes. In this work, we conduct empirical explorations and propose an ensemble method (namely QuickBoost), which is efficient and effective for improving the generalization of FSL. Specifically, QuickBoost includes an alternative-architecture pretrained encoder with a one-vs-all binary classifier (namely FSL-Forest) based on random forest algorithm, and is ensembled with the off-the-shelf FSL models via logit-level averaging. Experiments on three benchmarks demonstrate that our method achieves state-of-the-art performance with good efficiency. Codes are available at https://github.com/WendyBaiYunwei/FSL-QuickBoost.en_US
dc.publisherACM|Proceedings of the 32nd ACM International Conference on Multimediaen_US
dc.relation.isversionofhttps://doi.org/10.1145/3664647.3681446en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceAssociation for Computing Machineryen_US
dc.titleFSL-QuickBoost: Minimal-Cost Ensemble for Few-Shot Learningen_US
dc.typeArticleen_US
dc.identifier.citationBai, Yunwei, Cai, Bill Yang, Tan, Ying Kiat, Zheng, Zangwei, Chen, Shiming et al. 2024. "FSL-QuickBoost: Minimal-Cost Ensemble for Few-Shot Learning."
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2024-11-01T07:50:53Z
dc.language.rfc3066en
dc.rights.holderThe author(s)
dspace.date.submission2024-11-01T07:50:54Z
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record