Show simple item record

dc.contributor.authorTu, Yu-Ming
dc.contributor.authorKuehne, Matthias
dc.contributor.authorMisra, Rahul Prasanna
dc.contributor.authorRitt, Cody L
dc.contributor.authorOliaei, Hananeh
dc.contributor.authorFaucher, Samuel
dc.contributor.authorLi, Haokun
dc.contributor.authorXu, Xintong
dc.contributor.authorPenn, Aubrey
dc.contributor.authorYang, Sungyun
dc.contributor.authorYang, Jing Fan
dc.contributor.authorSendgikoski, Kyle
dc.contributor.authorChakraverty, Joshika
dc.contributor.authorCumings, John
dc.contributor.authorMajumdar, Arun
dc.contributor.authorAluru, Narayana R
dc.contributor.authorHachtel, Jordan A
dc.contributor.authorBlankschtein, Daniel
dc.contributor.authorStrano, Michael S
dc.date.accessioned2024-11-21T22:58:01Z
dc.date.available2024-11-21T22:58:01Z
dc.date.issued2024
dc.identifier.urihttps://hdl.handle.net/1721.1/157658
dc.description.abstractBecause of their large surface areas, nanotubes and nanowires demonstrate exquisite mechanical coupling to their surroundings, promising advanced sensors and nanomechanical devices. However, this environmental sensitivity has resulted in several ambiguous observations of vibrational coupling across various experiments. Herein, we demonstrate a temperature-dependent Radial Breathing Mode (RBM) frequency in free-standing, electron-diffraction-assigned Double-Walled Carbon Nanotubes (DWNTs) that shows an unexpected and thermally reversible frequency downshift of 10 to 15%, for systems isolated in vacuum. An analysis based on a harmonic oscillator model assigns the distinctive frequency cusp, produced over 93 scans of 3 distinct DWNTs, along with the hyperbolic trajectory, to a reversible increase in damping from graphitic ribbons on the exterior surface. Strain-dependent coupling from self-tensioned, suspended DWNTs maintains the ratio of spring-to-damping frequencies, producing a stable saturation of RBM in the low-tension limit. In contrast, when the interior of DWNTs is subjected to a water-filling process, the RBM thermal trajectory is altered to that of a Langmuir isobar and elliptical trajectories, allowing measurement of the enthalpy of confined fluid phase change. These mechanisms and quantitative theory provide new insights into the environmental coupling of nanomechanical systems and the implications for devices and nanofluidic conduits.</jats:p>en_US
dc.language.isoen
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionof10.1038/s41467-024-49661-8en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringeren_US
dc.titleEnvironmental damping and vibrational coupling of confined fluids within isolated carbon nanotubesen_US
dc.typeArticleen_US
dc.identifier.citationTu, YM., Kuehne, M., Misra, R.P. et al. Environmental damping and vibrational coupling of confined fluids within isolated carbon nanotubes. Nat Commun 15, 5605 (2024).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.relation.journalNature Communicationsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2024-11-21T22:47:19Z
dspace.orderedauthorsTu, Y-M; Kuehne, M; Misra, RP; Ritt, CL; Oliaei, H; Faucher, S; Li, H; Xu, X; Penn, A; Yang, S; Yang, JF; Sendgikoski, K; Chakraverty, J; Cumings, J; Majumdar, A; Aluru, NR; Hachtel, JA; Blankschtein, D; Strano, MSen_US
dspace.date.submission2024-11-21T22:47:26Z
mit.journal.volume15en_US
mit.journal.issue1en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record