Show simple item record

dc.contributor.authorSchaeffer, Joachim
dc.contributor.authorLenz, Eric
dc.contributor.authorGulla, Duncan
dc.contributor.authorBazant, Martin Z
dc.contributor.authorBraatz, Richard D
dc.contributor.authorFindeisen, Rolf
dc.date.accessioned2024-11-22T17:45:19Z
dc.date.available2024-11-22T17:45:19Z
dc.date.issued2024-10
dc.identifier.urihttps://hdl.handle.net/1721.1/157659
dc.description.abstractHealth monitoring, fault analysis, and detection methods are important to operate battery systems safely. We apply Gaussian process resistance models on lithium-iron-phosphate (LFP) battery field data to separate the time-dependent and operating-point-dependent resistances. The dataset contains 28 battery systems returned to the manufacturer for warranty, each with eight cells in series, totaling 224 cells and 133 million data rows. We develop probabilistic fault detection rules using recursive spatiotemporal Gaussian processes. These processes scale linearly with the number of data points, allowing online monitoring. The fault analysis underlines that often, only a single cell shows abnormal behavior or a knee point, consistent with weakest-link failure for cells connected in series, amplified by local resistive heating. The results further the understanding of how battery packs degrade and fail in the field and demonstrate the potential of online monitoring. We open source the code and publish the dataset with this article.en_US
dc.language.isoen
dc.publisherElsevier BVen_US
dc.relation.isversionof10.1016/j.xcrp.2024.102258en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceElsevieren_US
dc.titleGaussian process-based online health monitoring and fault analysis of lithium-ion battery systems from field dataen_US
dc.typeArticleen_US
dc.identifier.citationSchaeffer, Joachim, Lenz, Eric, Gulla, Duncan, Bazant, Martin Z, Braatz, Richard D et al. 2024. "Gaussian process-based online health monitoring and fault analysis of lithium-ion battery systems from field data." Cell Reports Physical Science, 5 (11).
dc.relation.journalCell Reports Physical Scienceen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2024-11-22T17:38:01Z
dspace.orderedauthorsSchaeffer, J; Lenz, E; Gulla, D; Bazant, MZ; Braatz, RD; Findeisen, Ren_US
dspace.date.submission2024-11-22T17:38:02Z
mit.journal.volume5en_US
mit.journal.issue11en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record