Show simple item record

dc.contributor.authorWatson, Eleanor
dc.contributor.authorNguyen, Minh
dc.contributor.authorPan, Sarah
dc.contributor.authorZhang, Shujun
dc.date.accessioned2025-03-31T19:36:08Z
dc.date.available2025-03-31T19:36:08Z
dc.date.issued2025-03-03
dc.identifier.urihttps://hdl.handle.net/1721.1/158997
dc.description.abstractValue alignment for AI is not “one-size-fits-all”: even polite and friendly models can still fail to represent individual user contexts and preferences, and local cultural norms. This paper presents a modular workflow for personal fine-tuning, synthesizing four core components from our previous research: (1) robust vectorization of user values and preferences, (2) a binary choice user interface (UI) approach to capturing those preferences with minimal cognitive load, (3) contrastive activation methods for steering large language models (LLMs) via difference vectors, and (4) knowledge graph integration for more auditable and structured alignment. Our approach—descended from past research on “Towards an End-to-End Personal Fine-Tuning Framework”—demonstrates how these elements can be combined to create personalized, context-rich alignment solutions. We report on user studies for the forced-choice UI, describe an experimental pipeline for deriving “control vectors”, and propose a “moral graph” method for bridging symbolic and vector-based alignment. Our findings suggest that multi-pronged personalization can significantly reduce user annotation fatigue, improve alignment fidelity, and allow for more flexible, interpretable AI behaviors.en_US
dc.publisherMultidisciplinary Digital Publishing Instituteen_US
dc.relation.isversionofhttp://dx.doi.org/10.3390/mti9030022en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceMultidisciplinary Digital Publishing Instituteen_US
dc.titleChoice Vectors: Streamlining Personal AI Alignment Through Binary Selectionen_US
dc.typeArticleen_US
dc.identifier.citationWatson, E.; Nguyen, M.; Pan, S.; Zhang, S. Choice Vectors: Streamlining Personal AI Alignment Through Binary Selection. Multimodal Technol. Interact. 2025, 9, 22.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.relation.journalMultimodal Technologies and Interactionsen_US
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2025-03-26T15:34:26Z
dspace.date.submission2025-03-26T15:34:26Z
mit.journal.volume9en_US
mit.journal.issue3en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record