Show simple item record

dc.contributor.authorFan, Benjamin
dc.contributor.authorQiao, Edward
dc.contributor.authorJiao, Anran
dc.contributor.authorGu, Zhouzhou
dc.contributor.authorLi, Wenhao
dc.contributor.authorLu, Lu
dc.date.accessioned2025-06-10T18:59:31Z
dc.date.available2025-06-10T18:59:31Z
dc.date.issued2024-08-09
dc.identifier.urihttps://hdl.handle.net/1721.1/159389
dc.description.abstractWe develop a methodology that utilizes deep learning to simultaneously solve and estimate canonical continuous-time general equilibrium models in financial economics. We illustrate our method in two examples: (1) industrial dynamics of firms and (2) macroeconomic models with financial frictions. Through these applications, we illustrate the advantages of our method: generality, simultaneous solution and estimation, leveraging the state-of-art machine-learning techniques, and handling large state space. The method is versatile and can be applied to a vast variety of problems.en_US
dc.publisherSpringer USen_US
dc.relation.isversionofhttps://doi.org/10.1007/s10614-024-10693-3en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceSpringer USen_US
dc.titleDeep Learning for Solving and Estimating Dynamic Macro-finance Modelsen_US
dc.typeArticleen_US
dc.identifier.citationFan, B., Qiao, E., Jiao, A. et al. Deep Learning for Solving and Estimating Dynamic Macro-finance Models. Comput Econ 65, 3885–3921 (2025).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.relation.journalComputational Economicsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2025-05-30T03:29:57Z
dc.language.rfc3066en
dc.rights.holderThe Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
dspace.embargo.termsY
dspace.date.submission2025-05-30T03:29:57Z
mit.journal.volume65en_US
mit.licensePUBLISHER_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record