MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Brachial Plexopathy in Head and Neck Cancer Potentially Related to LET-Dependent RBE

Author(s)
Hanna, Abanob; Casper, Anthony; Dagan, Roi; Grewal, Hardev S.; Park, Jiyeon; Brooks, Eric D.; Traneus, Erik; Glimelius, Lars; Johnson, Perry B.; Saki, Mohammad; Zhang, Yawei; Willoughby, Twyla R.; Bradley, Julie A.; Browne, Jackson; Artz, Mark E.; ... Show more Show less
Thumbnail
Downloadbiophysica-05-00020.pdf (1.125Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Proton beam therapy for head and neck cancers traditionally employs a fixed relative biological effectiveness (RBE) of 1.1, which may underestimate actual biological effects in critical structures. This study evaluates how Linear Energy Transfer (LET) optimization could potentially prevent radiation-induced brachial plexopathy (RIBP). (1) Case presentation: A 65-year-old male with stage IVA p16-positive oropharyngeal squamous cell carcinoma received pencil-beam-scanning intensity-modulated proton therapy with concurrent cisplatin. Due to a right level 4 neck node, the high-risk target volume overlapped with the brachial plexus, resulting in a D0.1cc of 70.3 Gy (RBE = 1.1). Four years post-treatment, the patient developed progressive right upper extremity paresthesia, weakness, and dysesthesia. Electromyography revealed myokymia consistent with brachial plexopathy, while MRI showed hyperintensity of the right brachial plexus corresponding to the radiation field. Conservative treatment with pentoxifylline, gabapentin, and physical therapy improved his symptoms. (2) Methods: The original treatment plan was retrospectively analyzed using Monte Carlo dose algorithms and LET-dependent RBE models from McMahon and McNamara. An LET-optimized plan was created to limit LETd to 2.0 keV/µm in the brachial plexus. (3) Results: The relative biological equivalent (RBE) dose to 0.1cc of the brachial plexus was 77.8 Gy (CGE RBE), exceeding tolerance. The LET-optimized plan reduced the brachial plexus D0.1cc to 59.4 Gy (RBE = 1.1) and 63.2 Gy (CGE RBE), an 18.8% decrease, while maintaining target coverage. LETd, within the brachial plexus enhancement, decreased from 5.3 to 2.6 keV/μm. (4) Conclusion: This case highlights the potential clinical importance of LET optimization in proton therapy planning, particularly when organs-at-risk overlap with target volumes. By reducing LETd from 5.3 to 2.6 keV/μm and biological equivalent dose by 18.8%, LET optimization could potentially prevent late toxicities, like RIBP, while maintaining target coverage.
Date issued
2025-05-29
URI
https://hdl.handle.net/1721.1/159859
Journal
Biophysica
Publisher
Multidisciplinary Digital Publishing Institute
Citation
Hanna, A.; Casper, A.; Dagan, R.; Grewal, H.S.; Park, J.; Brooks, E.D.; Traneus, E.; Glimelius, L.; Johnson, P.B.; Saki, M.; et al. Brachial Plexopathy in Head and Neck Cancer Potentially Related to LET-Dependent RBE. Biophysica 2025, 5, 20.
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.