MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Using experimental data in computationally guided rational design of inorganic materials with machine learning

Author(s)
Kulik, Heather J.
Thumbnail
Download43578_2025_Article_1568.pdf (6.600Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
While the impact of machine learning (ML) has been felt everywhere, its effect has been most transformative where large, high-quality datasets are available. For promising materials spaces, such as transition metal coordination complexes and metal–organic frameworks, the large chemical diversity has not yet been matched by similarly large datasets, and computational datasets (e.g., from density functional theory) may not be predictive. Extraction of experimental data from the literature represents an alternative approach to the data-driven design of materials. This perspective will describe efforts in (i) extracting experimental data; (ii) associating extracted data with known chemical structures; (iii) leveraging data in ML and screening; (iv) designing materials with enriched stability; and (v) using experimental data to improve high-throughput workflows. I will summarize some of the outstanding challenges and opportunities for data enrichment with high-throughput experimentation and large language models.
Date issued
2025-04-08
URI
https://hdl.handle.net/1721.1/162658
Department
Massachusetts Institute of Technology. Department of Chemical Engineering; Massachusetts Institute of Technology. Department of Chemistry
Journal
Journal of Materials Research
Publisher
Springer International Publishing
Citation
Kulik, H.J. Using experimental data in computationally guided rational design of inorganic materials with machine learning. J. Mater. Res. 40, 833–848 (2025).
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.