MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Machine learning demand forecasting and supply chain performance

Author(s)
Feizabadi, Javad
Thumbnail
DownloadMachine learning demand forecasting and supply chain performance.pdf (3.287Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
In many supply chains, firms staged in upstream of the chain suffer from variance amplification emanating from demand information distortion in a multi-stage supply chain and, consequently, their operation inefficiency. Prior research suggest that employing advanced demand forecasting, such as machine learning, could mitigate the effect and improve the performance; however, it is less known what is the extent and magnitude of savings as tangible supply chain performance outcomes. In this research, hybrid demand forecasting methods grounded on machine learning i.e. ARIMAX and Neural Network is developed. Both time series and explanatory factors are feed into the developed method. The method was applied and evaluated in the context of functional product and a steel manufacturer. The statistically significant supply chain performance improvement differences were found across traditional and ML-based demand forecasting methods. The implications for the theory and practice are also presented.
Date issued
2020-08-04
URI
https://hdl.handle.net/1721.1/164301
Department
Massachusetts Institute of Technology. Supply Chain Management Program
Journal
International Journal of Logistics Research and Applications
Publisher
Taylor & Francis
Citation
Feizabadi, J. (2022). Machine learning demand forecasting and supply chain performance. International Journal of Logistics Research and Applications, 25(2), 119–142.
Version: Final published version
ISSN
1367-5567
1469-848X

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.