MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

MechStyle: Augmenting Generative AI with Mechanical Simulation to Create Stylized and Structurally Viable 3D Models

Author(s)
Faruqi, Faraz; Abdel-Rahman, Amira; Tejedor, Leandra; Nisser, Martin; Li, Jiaji; Phadnis, Vrushank; Jampani, Varun; Gershenfeld, Neil; Hofmann, Megan; Mueller, Stefanie; ... Show more Show less
Thumbnail
Download3745778.3766655.pdf (8.159Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Recent developments in Generative AI enable creators to stylize 3D models based on text prompts. These methods change the 3D model geometry, which can compromise the model’s structural integrity once fabricated. We present MechStyle, a system that enables creators to stylize 3D printable models while preserving their structural integrity. MechStyle accomplishes this by augmenting the Generative AI-based stylization process with feedback from a Finite Element Analysis (FEA) simulation. As the stylization process modifies the geometry to approximate the desired style, feedback from the FEA simulation reduces modifications to regions with increased stress. We evaluate the effectiveness of FEA simulation feedback in the augmented stylization process by comparing three stylization control strategies. We also investigate the time efficiency of our approach by comparing three adaptive scheduling strategies. Finally, we demonstrate MechStyle’s user interface that allows users to generate stylized and structurally viable 3D models and provide five example applications.
Description
SCF ’25, Cambridge, MA, USA
Date issued
2025-11-19
URI
https://hdl.handle.net/1721.1/164312
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. Center for Bits and Atoms
Publisher
ACM|ACM Symposium on Computational Fabrication
Citation
Faraz Faruqi, Amira Abdel-Rahman, Leandra Tejedor, Martin Nisser, Jiaji Li, Vrushank Phadnis, Varun Jampani, Neil Gershenfeld, Megan Hofmann, and Stefanie Mueller. 2025. MechStyle: Augmenting Generative AI with Mechanical Simulation to Create Stylized and Structurally Viable 3D Models. In Proceedings of the ACM Symposium on Computational Fabrication (SCF '25). Association for Computing Machinery, New York, NY, USA, Article 24, 1–15.
Version: Final published version
ISBN
979-8-4007-2034-5

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.