Show simple item record

dc.contributor.authorYang, Jason
dc.date.accessioned2025-12-12T22:09:25Z
dc.date.available2025-12-12T22:09:25Z
dc.date.issued2025-11-10
dc.identifier.isbn979-8-4007-2075-8
dc.identifier.urihttps://hdl.handle.net/1721.1/164315
dc.descriptionISSAC ’25, Guanajuato, Mexicoen_US
dc.description.abstractWe present an 𝑂 ∗ (|F| min{𝑅, Í 𝑑≥2 𝑛𝑑 }+(𝑅−𝑛0 ) (Í 𝑑≠0 𝑛𝑑 ) )-time algorithm for determining whether the rank of a concise tensor 𝑇 ∈ F 𝑛0×···×𝑛𝐷−1 is ≤ 𝑅, assuming 𝑛0 ≥ · · · ≥ 𝑛𝐷−1 and 𝑅 ≥ 𝑛0. For 3-dimensional tensors, we have a second algorithm running in 𝑂 ∗ (|F| 𝑛0+𝑛2+(𝑅−𝑛0+1−𝑟∗ ) (𝑛1+𝑛2 )+𝑟 2 ∗ ) time, where 𝑟∗ := j 𝑅 𝑛0 k + 1. Both algorithms use polynomial space and improve on our previous work, which achieved running time 𝑂 ∗ (|F| 𝑛0+(𝑅−𝑛0 ) (Í 𝑑 𝑛𝑑 ) ).en_US
dc.publisherACM|International Symposium on Symbolic and Algebraic Computationen_US
dc.relation.isversionofhttps://doi.org/10.1145/3747199.3747555en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceAssociation for Computing Machineryen_US
dc.titleFaster search for tensor decomposition over finite fieldsen_US
dc.typeArticleen_US
dc.identifier.citationJason Yang. 2025. Faster search for tensor decomposition over finite fields. In Proceedings of the 2025 International Symposium on Symbolic and Algebraic Computation (ISSAC '25). Association for Computing Machinery, New York, NY, USA, 132–139.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.identifier.mitlicensePUBLISHER_POLICY
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2025-12-01T09:37:24Z
dc.language.rfc3066en
dc.rights.holderThe author(s)
dspace.date.submission2025-12-01T09:37:24Z
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US
๏ปฟ

Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record