Show simple item record

dc.contributor.authorRestrepo, David
dc.contributor.authorQuion, Justin Michael
dc.contributor.authorDo Carmo Novaes, Frederico
dc.contributor.authorAzevedo Costa, Iago Diogenes
dc.contributor.authorVasquez, Constanza
dc.contributor.authorBautista, Alyssa Nicole
dc.contributor.authorQuiminiano, Ellaine
dc.contributor.authorLim, Patricia Abigail
dc.contributor.authorMwavu, Roger
dc.contributor.authorCeli, Leo Anthony
dc.contributor.authorNakayama, Luis Filipe
dc.date.accessioned2025-12-16T18:30:24Z
dc.date.available2025-12-16T18:30:24Z
dc.date.issued2024-04-02
dc.identifier.urihttps://hdl.handle.net/1721.1/164340
dc.description.abstractBACKGROUND: Imaging plays a pivotal role in eye assessment. With the introduction of advanced machine learning and artificial intelligence (AI), the focus has shifted to imaging datasets in ophthalmology. While disparities and health inequalities hidden within data are well-documented, the ophthalmology field faces specific challenges to the creation and maintenance of datasets. Optical Coherence Tomography (OCT) is useful for the diagnosis and monitoring of retinal pathologies, making it valuable for AI applications. This review aims to identify and compare the landscape of publicly available optical coherence tomography databases for AI applications. METHODS: We conducted a literature review on OCT and AI articles with publicly accessible datasets, using PubMed, Scopus, and Web of Science databases. The review retrieved 183 articles, and after full-text analysis, 50 articles were included. From the included articles were identified 8 publicly available OCT datasets, focusing on patient demographics and clinical details for thorough assessment and comparison. RESULTS: The resulting datasets encompass 154,313 images collected from Spectralis, Cirrus HD, Topcon 3D, and Bioptigen devices. These datasets included normal exams, age-related macular degeneration, and diabetic maculopathy, among others. Comprehensive demographic information is available in one dataset and the USA is the most represented population. DISCUSSION: Current publicly available OCT databases for AI applications exhibit limitations, stemming from their non-representative nature and the lack of comprehensive demographic information. Limited datasets hamper research and equitable AI development. To promote equitable AI algorithmic development in ophthalmology, there is a need for the creation and dissemination of more representative datasets.en_US
dc.language.isoen
dc.publisherTaylor & Francisen_US
dc.relation.isversionofhttps://doi.org/10.1080/08820538.2024.2308248en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceTaylor & Francisen_US
dc.titleOphthalmology Optical Coherence Tomography Databases for Artificial Intelligence Algorithm: A Reviewen_US
dc.typeArticleen_US
dc.identifier.citationRestrepo, D., Quion, J. M., Do Carmo Novaes, F., Azevedo Costa, I. D., Vasquez, C., Bautista, A. N., … Nakayama, L. F. (2024). Ophthalmology Optical Coherence Tomography Databases for Artificial Intelligence Algorithm: A Review. Seminars in Ophthalmology, 39(3), 193–200.en_US
dc.contributor.departmentHarvard--MIT Program in Health Sciences and Technology. Laboratory for Computational Physiologyen_US
dc.relation.journalSeminars in Ophthalmologyen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2025-12-16T18:18:11Z
dspace.orderedauthorsRestrepo, D; Quion, JM; Do Carmo Novaes, F; Azevedo Costa, ID; Vasquez, C; Bautista, AN; Quiminiano, E; Lim, PA; Mwavu, R; Celi, LA; Nakayama, LFen_US
dspace.date.submission2025-12-16T18:18:28Z
mit.journal.volume39en_US
mit.journal.issue3en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record