Show simple item record

dc.contributor.authorVan Heyningen, Robert Loek
dc.contributor.authorNguyen, Ngoc Cuong
dc.contributor.authorBlonigan, Patrick
dc.contributor.authorPeraire, Jaime
dc.date.accessioned2025-12-17T17:01:13Z
dc.date.available2025-12-17T17:01:13Z
dc.date.issued2024-04-28
dc.identifier.urihttps://hdl.handle.net/1721.1/164385
dc.description.abstractThe solution of conservation laws with parametrised shock waves presents challenges for both high-order numerical methods and model reduction techniques. We introduce an r-adaptivity scheme based on optimal transport and apply it to develop reduced order models for compressible flows. The optimal transport theory allows us to compute high-order r-adaptive meshes from a starting reference mesh by solving the Monge–Ampère equation. A high-order discretization of the conservation laws enables high-order solutions to be computed on the resulting r-adaptive meshes. Furthermore, the Monge–Ampère solutions contain mappings that are used to reduce the spatial locality of the resulting solutions and make them more amenable to model reduction. We use a non-intrusive model reduction method to construct reduced order models of both the mesh and the solution. The procedure is demonstrated on three supersonic and hypersonic test cases, with the hybridisable discontinuous Galerkin method being used as the full order model.en_US
dc.language.isoen
dc.publisherTaylor & Francisen_US
dc.relation.isversionofhttps://doi.org/10.1080/10618562.2024.2326559en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivativesen_US
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourceTaylor & Francisen_US
dc.titleAdaptive Model Reduction of High-Order Solutions of Compressible Flows via Optimal Transporten_US
dc.typeArticleen_US
dc.identifier.citationVan Heyningen, R. L., Nguyen, N. C., Blonigan, P., & Peraire, J. (2023). Adaptive Model Reduction of High-Order Solutions of Compressible Flows via Optimal Transport. International Journal of Computational Fluid Dynamics, 37(6), 541–563.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Center for Computational Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.relation.journalInternational Journal of Computational Fluid Dynamicsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2025-12-17T16:55:07Z
dspace.orderedauthorsVan Heyningen, RL; Nguyen, NC; Blonigan, P; Peraire, Jen_US
dspace.date.submission2025-12-17T16:55:13Z
mit.journal.volume37en_US
mit.journal.issue6en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record