MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Roadmap of Graphite Moderator and Graphite-Matrix TRISO Fuel Management Options

Author(s)
Forsberg, CW
Thumbnail
DownloadPublished version (4.602Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Most high-temperature reactors use graphite as a moderator and structural material. This includes high-temperature gas-cooled reactors with helium cooling and TRi-structural ISOtropic (TRISO) fuel particles embedded in graphite, as well as fluoride salt–cooled high-temperature reactors with clean salt coolant and TRISO fuel particles embedded in graphite and thermal spectrum molten salt reactors with a graphite moderator and fuel dissolved in the salt. The largest volume radioactive waste stream from these reactors is the irradiated graphite. We describe herein a roadmap for management of these graphite wastes that contain radioactive 14C, tritium, and other radionuclides. There may be some graphite wastes with sufficiently low radioactivity levels that can be treated as nonradioactive waste and managed like other graphite waste. Management options for the graphite include (1) direct disposal, (2) recycled back to the reactor or other nuclear applications, and (3) oxidizing the graphite with release as an effluent or underground sequestration of the carbon dioxide. Cosequestration of this carbon dioxide with carbon dioxide from industrial, biological, and cement production processes can isotopically dilute the 14C before sequestration to eliminate the possibility of exceeding individual radiation exposure limits. We also describe options for processing graphite-matrix TRISO fuel, including separating the bulk graphite to reduce the volumes of used fuel for disposal or processing to recover fissile materials. The inventories of radioactive isotopes in different carbon wastes vary by many orders of magnitude; thus, there is no single economic option for the management of all graphite waste.
Date issued
2024-09-01
URI
https://hdl.handle.net/1721.1/164386
Department
Massachusetts Institute of Technology. Department of Nuclear Science and Engineering; MIT Energy Initiative
Journal
Nuclear Technology
Publisher
Taylor & Francis
Citation
Forsberg, C. W. (2024). Roadmap of Graphite Moderator and Graphite-Matrix TRISO Fuel Management Options. Nuclear Technology, 210(9), 1623–1638.
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.