Show simple item record

dc.contributor.authorDiakonikolas, Ilias
dc.contributor.authorHopkins, Samuel
dc.contributor.authorPensia, Ankit
dc.contributor.authorTiegel, Stefan
dc.date.accessioned2025-12-18T22:57:56Z
dc.date.available2025-12-18T22:57:56Z
dc.date.issued2025-06-15
dc.identifier.isbn979-8-4007-1510-5
dc.identifier.urihttps://hdl.handle.net/1721.1/164416
dc.descriptionSTOC ’25, Prague, Czechiaen_US
dc.description.abstractWe prove that there is a universal constant C>0 so that for every d ∈ ℕ, every centered subgaussian distribution D on ℝd, and every even p ∈ ℕ, the d-variate polynomial (Cp)p/2 · ||v||2p − EX ∼ D ⟨ v,X⟩p is a sum of square polynomials. This establishes that every subgaussian distribution is SoS-certifiably subgaussian—a condition that yields efficient learning algorithms for a wide variety of high-dimensional statistical tasks. As a direct corollary, we obtain computationally efficient algorithms with near-optimal guarantees for the following tasks, when given samples from an arbitrary subgaussian distribution: robust mean estimation, list-decodable mean estimation, clustering mean-separated mixture models, robust covariance-aware mean estimation, robust covariance estimation, and robust linear regression. Our proof makes essential use of Talagrand’s generic chaining/majorizing measures theorem.en_US
dc.publisherACM|Proceedings of the 57th Annual ACM Symposium on Theory of Computingen_US
dc.relation.isversionofhttps://doi.org/10.1145/3717823.3718183en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceAssociation for Computing Machineryen_US
dc.titleSoS Certifiability of Subgaussian Distributions and Its Algorithmic Applicationsen_US
dc.typeArticleen_US
dc.identifier.citationIlias Diakonikolas, Samuel B. Hopkins, Ankit Pensia, and Stefan Tiegel. 2025. SoS Certifiability of Subgaussian Distributions and Its Algorithmic Applications. In Proceedings of the 57th Annual ACM Symposium on Theory of Computing (STOC '25). Association for Computing Machinery, New York, NY, USA, 1689–1700.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.identifier.mitlicensePUBLISHER_POLICY
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2025-08-01T08:40:05Z
dc.language.rfc3066en
dc.rights.holderThe author(s)
dspace.date.submission2025-08-01T08:40:05Z
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record