Show simple item record

dc.contributor.authorEden, Talya
dc.contributor.authorLevi, Reut
dc.contributor.authorRon, Dana
dc.contributor.authorRubinfeld, Ronitt
dc.date.accessioned2025-12-22T22:09:15Z
dc.date.available2025-12-22T22:09:15Z
dc.date.issued2025-06-15
dc.identifier.isbn979-8-4007-1510-5
dc.identifier.urihttps://hdl.handle.net/1721.1/164435
dc.descriptionSTOC ’25, Prague, Czechiaen_US
dc.description.abstractCounting small subgraphs, referred to as motifs, in large graphs is a fundamental task in graph analysis, extensively studied across various contexts and computational models. In the sublinear-time regime, the relaxed problem of approximate counting has been explored within two prominent query frameworks: the standard model, which permits degree, neighbor, and pair queries, and the strictly more powerful augmented model, which additionally allows for uniform edge sampling. Currently, in the standard model, (optimal) results have been established only for approximately counting edges, stars, and cliques, all of which have a radius of one. This contrasts sharply with the state of affairs in the augmented model, where algorithmic results (some of which are optimal) are known for any input motif, leading to a disparity which we term the “scope gap" between the two models. In this work, we make significant progress in bridging this gap. Our approach draws inspiration from recent advancements in the augmented model and utilizes a framework centered on counting by uniform sampling, thus allowing us to establish new results in the standard model and simplify on previous results. In particular, our first, and main, contribution is a new algorithm in the standard model for approximately counting any Hamiltonian motif in sublinear time, where the complexity of the algorithm is the sum of two terms. One term equals the complexity of the known algorithms by Assadi, Kapralov, and Khanna (ITCS 2019) and Fichtenberger and Peng (ICALP 2020) in the (strictly stronger) augmented model and the other is an additional, necessary, additive overhead. Our second contribution is a variant of our algorithm that enables nearly uniform sampling of these motifs, a capability previously limited in the standard model to edges and cliques. Our third contribution is to introduce even simpler algorithms for stars and cliques by exploiting their radius-one property. As a result, we simplify all previously known algorithms in the standard model for stars (Gonen, Ron, Shavitt (SODA 2010)), triangles (Eden, Levi, Ron Seshadhri (FOCS 2015)) and cliques (Eden, Ron, Seshadri (STOC 2018)).en_US
dc.publisherACM|Proceedings of the 57th Annual ACM Symposium on Theory of Computingen_US
dc.relation.isversionofhttps://doi.org/10.1145/3717823.3718160en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceAssociation for Computing Machineryen_US
dc.titleApproximately Counting and Sampling Hamiltonian Motifs in Sublinear Timeen_US
dc.typeArticleen_US
dc.identifier.citationTalya Eden, Reut Levi, Dana Ron, and Ronitt Rubinfeld. 2025. Approximately Counting and Sampling Hamiltonian Motifs in Sublinear Time. In Proceedings of the 57th Annual ACM Symposium on Theory of Computing (STOC '25). Association for Computing Machinery, New York, NY, USA, 1043–1054.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.identifier.mitlicensePUBLISHER_POLICY
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2025-08-01T08:39:13Z
dc.language.rfc3066en
dc.rights.holderThe author(s)
dspace.date.submission2025-08-01T08:39:13Z
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record