| dc.contributor.author | Bafna, Mitali | |
| dc.contributor.author | Minzer, Dor | |
| dc.date.accessioned | 2025-12-22T22:23:57Z | |
| dc.date.available | 2025-12-22T22:23:57Z | |
| dc.date.issued | 2025-06-15 | |
| dc.identifier.isbn | 979-8-4007-1510-5 | |
| dc.identifier.uri | https://hdl.handle.net/1721.1/164437 | |
| dc.description | STOC ’25, Prague, Czechia | en_US |
| dc.description.abstract | In the almost-everywhere reliable message transmission problem, introduced by [Dwork, Pippenger, Peleg, Upfal’86], the goal is to design a sparse communication network G that supports efficient, fault-tolerant protocols for interactions between all node pairs. By fault-tolerant, we mean that that even if an adversary corrupts a small fraction of vertices in G, then all but a small fraction of vertices can still communicate perfectly via the constructed protocols. Being successful to do so allows one to simulate, on a sparse graph, any fault-tolerant distributed computing task and secure multi-party computation protocols built for a complete network, with only minimal overhead in efficiency. Previous works on this problem achieved either constant-degree networks tolerating o(1) faults, constant-degree networks tolerating a constant fraction of faults via inefficient protocols (exponential work complexity), or poly-logarithmic degree networks tolerating a constant fraction of faults. We show a construction of constant-degree networks with efficient protocols (i.e., with polylogarithmic work complexity) that can tolerate a constant fraction of adversarial faults, thus solving the main open problem of Dwork et al. Our main contribution is a composition technique for communication networks, based on graph products. Our technique combines two networks tolerant to adversarial edge-faults to construct a network with a smaller degree while maintaining efficiency and fault-tolerance. We apply this composition result multiple times, using the polylogarithmic-degree edge-fault tolerant networks constructed in a recent work of [Bafna, Minzer, Vyas’24] (that are based on high-dimensional expanders) with itself, and then with the constant-degree networks (albeit with inefficient protocols) of [Upfal’92]. | en_US |
| dc.publisher | ACM|Proceedings of the 57th Annual ACM Symposium on Theory of Computing | en_US |
| dc.relation.isversionof | https://doi.org/10.1145/3717823.3718170 | en_US |
| dc.rights | Creative Commons Attribution | en_US |
| dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | en_US |
| dc.source | Association for Computing Machinery | en_US |
| dc.title | Constant Degree Networks for Almost-Everywhere Reliable Transmission | en_US |
| dc.type | Article | en_US |
| dc.identifier.citation | Mitali Bafna and Dor Minzer. 2025. Constant Degree Networks for Almost-Everywhere Reliable Transmission. In Proceedings of the 57th Annual ACM Symposium on Theory of Computing (STOC '25). Association for Computing Machinery, New York, NY, USA, 1319–1328. | en_US |
| dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | en_US |
| dc.identifier.mitlicense | PUBLISHER_POLICY | |
| dc.eprint.version | Final published version | en_US |
| dc.type.uri | http://purl.org/eprint/type/ConferencePaper | en_US |
| eprint.status | http://purl.org/eprint/status/NonPeerReviewed | en_US |
| dc.date.updated | 2025-08-01T08:39:30Z | |
| dc.language.rfc3066 | en | |
| dc.rights.holder | The author(s) | |
| dspace.date.submission | 2025-08-01T08:39:30Z | |
| mit.license | PUBLISHER_CC | |
| mit.metadata.status | Authority Work and Publication Information Needed | en_US |