MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Development of a Test Bed to Investigate Wetting Behaviours of High-Temperature Heavy Liquid Metals for Advanced Nuclear Applications

Author(s)
Saraswat, Abhishek; Bhattacharyay, Rajendraprasad; Chaudhuri, Paritosh; Gedupudi, Sateesh
Thumbnail
Downloadliquids-05-00033.pdf (3.318Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Specifically engineered heavy liquid metals are proposed as candidate coolants and tritium breeders for advanced nuclear applications. Understanding the wetting behaviours of these liquids on relevant substrate configurations is crucial to tackle the challenges associated with corrosion protection and flow diagnostics development. However, detailed investigations are scarce in the literature. In this experimental study, an apparatus is designed to measure contact angles of different liquid metals over a mirror-polished horizontal SS-304 substrate. This paper presents design aspects of the developed test facility, as well as initial results obtained using direct imaging and the Low-Bond Axisymmetric Drop Shape Analysis algorithm-based image processing technique. Methodological validation is achieved through surrogate liquids/liquid metals (H2O, Hg, Ga, GaInSn), prior to taking measurements from molten lead (Pb) droplets at 425 °C. Estimated contact angles obtained using the two techniques lie within ±10% deviation. Towards the end, the paper lays out plans for future upgrades for studies of wetting behaviours of molten Pb/Pb alloys on substrates with relevant surface properties, including bare P-91 and reduced-activation ferritic–martensitic steels, along with Al2O3/Er2O3-coated versions of these materials, to generate a database for Gen-IV fission reactors and fusion power plants.
Date issued
2025-11-26
URI
https://hdl.handle.net/1721.1/164468
Department
Massachusetts Institute of Technology. Plasma Science and Fusion Center
Journal
Liquids
Publisher
Multidisciplinary Digital Publishing Institute
Citation
Saraswat, A.; Bhattacharyay, R.; Chaudhuri, P.; Gedupudi, S. Development of a Test Bed to Investigate Wetting Behaviours of High-Temperature Heavy Liquid Metals for Advanced Nuclear Applications. Liquids 2025, 5, 33.
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.