MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Energy-energy correlator at hadron colliders: celestial blocks and singularities

Author(s)
Chen, Hao; Ruan, Hongyi; Zhu, Hua X.
Thumbnail
Download13130_2025_Article_27870.pdf (5.390Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Energy-energy correlator (EEC) is an event shape observable that characterizes the distribution of energy flux in collision events. We initiate the study of full-range EEC at hadron colliders, generalizing the extensively studied EEC in e+e− collision as well as the transverse EEC in hadron collisions. We derive celestial blocks from Lorentz symmetry to perform partial wave decomposition of the EEC at hadron colliders. These celestial blocks are essentially conformal blocks on the 2d celestial sphere, which have additional dependence on the collinear spin of “light-ray transition matrix” along the collision axis. In this work, we perform the leading-order (LO) analytic calculation of this observable in pure Yang-Mills theory and use it as an example to illustrate the block decomposition. Numerically, the block expansion demonstrates superior accuracy in the collinear limit compared to conventional power series expansion. Analytically, we observe in this example that the block coefficients exhibit analyticity in both collinear and transverse spin. In addition, we analyze several kinematic limits at LO — collinear, back-to-back, opposite coplanar and Regge limit. While the first three limits naturally generalize their e+e− collision counterparts or transverse EEC and are governed by soft-collinear dynamics, the Regge limit requires complete angular dependence and reveals BFKL physics. Phenomenologically, we propose a realistic experimental setup and briefly discuss how the convolution of parton distribution function modifies the perturbative EEC result. Our work suggests that the full-range EEC at hadron colliders is an elegant observable which probes a broader kinematic space and connects various regimes of different QCD dynamics through a single measurement.
Date issued
2025-12-22
URI
https://hdl.handle.net/1721.1/164516
Department
Massachusetts Institute of Technology. Center for Theoretical Physics
Journal
Journal of High Energy Physics
Publisher
Springer Berlin Heidelberg
Citation
Chen, H., Ruan, H. & Zhu, H.X. Energy-energy correlator at hadron colliders: celestial blocks and singularities. J. High Energ. Phys. 2025, 168 (2025).
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.