Show simple item record

dc.contributor.authorWu, Che-Cheng
dc.contributor.authorHuang, Syuan-Bo
dc.contributor.authorSong, Yu-Lun
dc.contributor.authorLin, Po-Han
dc.contributor.authorLin, Michael
dc.contributor.authorLin, Yu-Ta
dc.date.accessioned2026-01-14T21:50:44Z
dc.date.available2026-01-14T21:50:44Z
dc.date.issued2025-11-02
dc.identifier.isbn979-8-4007-2261-5
dc.identifier.urihttps://hdl.handle.net/1721.1/164534
dc.descriptionGeoGenAgent ’25, Minneapolis, MN, USAen_US
dc.description.abstractWe propose a system that democratizes multi-granularity spatio-temporal analysis by integrating a Discrete Global Grid System (DGGS) data pipeline with a Multi-Agent System (MAS). Unlike existing single-agent spatial AI solutions that primarily target experts and lack support for heterogeneous data, persistent memory, and validation, our platform converts diverse datasets into standardized H3-indexed cells, enabling consistent analysis across scales. To enhance usability for non-experts, the system interactively guides users to refine queries, which are decomposed into sub-tasks managed by specialized agents for data retrieval, transformation, analysis, and visualization. Agents communicate through a decentralized framework with shared memory, supporting persistent reasoning and multi-turn dialogue. Reflection modules and human-in-the-loop validation further strengthen robustness. Demonstrated through real-world scenarios, such as analyzing the relationship between aging rate patterns and average income to inform social welfare policy in Taiwan, the system illustrates how natural language queries, combined with intuitive map- and chart-based visualizations, can support evidence-based decision-making.en_US
dc.publisherACM|The 1st ACM SIGSPATIAL International Workshop on Generative and Agentic AI for Multi-Modality Space-Time Intelligenceen_US
dc.relation.isversionofhttps://doi.org/10.1145/3764915.3770718en_US
dc.rightsCreative Commons Attribution-Noncommercialen_US
dc.rights.urihttps://creativecommons.org/licenses/by-ncen_US
dc.sourceAssociation for Computing Machineryen_US
dc.titleDemocratizing Multi-Granularity Spatio-Temporal Intelligence with Multi-Agent Systemsen_US
dc.typeArticleen_US
dc.identifier.citationChe-Cheng Wu, Syuan-Bo Huang, Yu-Lun Song, Po-Han Lin, Michael Chia-Liang Lin, and Yu-Ta Lin. 2025. Democratizing Multi-Granularity Spatio-Temporal Intelligence with Multi-Agent Systems. In Proceedings of the 1st ACM SIGSPATIAL International Workshop on Generative and Agentic AI for Multi-Modality Space-Time Intelligence (GeoGenAgent '25). Association for Computing Machinery, New York, NY, USA, 22–26.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Media Laboratoryen_US
dc.identifier.mitlicensePUBLISHER_POLICY
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2026-01-01T08:55:26Z
dc.language.rfc3066en
dc.rights.holderThe author(s)
dspace.date.submission2026-01-01T08:55:26Z
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record