MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

On the Spielman-Teng Conjecture

Author(s)
Sah, Ashwin; Sahasrabudhe, Julian; Sawhney, Mehtaab
Download39_2025_707_ReferencePDF.pdf (Embargoed until: 2026-02-13, 819.5Kb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Let M be an n×n matrix with iid subgaussian entries with mean 0 and variance 1 and let σn(M) denote the least singular value of M. We prove that $$ \mathbb{P}\big( \sigma _{n}(M) \leqslant \varepsilon n^{-1/2} \big) = (1+o(1)) \varepsilon + e^{- \Omega (n)} $$ for all 0⩽ε≪1. This resolves, up to a 1+o(1) factor, a seminal conjecture of Spielman and Teng.
Date issued
2025-02-13
URI
https://hdl.handle.net/1721.1/159423
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Geometric and Functional Analysis
Publisher
Springer International Publishing
Citation
Sah, A., Sahasrabudhe, J. & Sawhney, M. On the Spielman-Teng Conjecture. Geom. Funct. Anal. 35, 633–671 (2025).
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.