Show simple item record

dc.contributor.authorSah, Ashwin
dc.contributor.authorSahasrabudhe, Julian
dc.contributor.authorSawhney, Mehtaab
dc.date.accessioned2025-06-16T19:46:47Z
dc.date.available2025-06-16T19:46:47Z
dc.date.issued2025-02-13
dc.identifier.urihttps://hdl.handle.net/1721.1/159423
dc.description.abstractLet M be an n×n matrix with iid subgaussian entries with mean 0 and variance 1 and let σn(M) denote the least singular value of M. We prove that $$ \mathbb{P}\big( \sigma _{n}(M) \leqslant \varepsilon n^{-1/2} \big) = (1+o(1)) \varepsilon + e^{- \Omega (n)} $$ for all 0⩽ε≪1. This resolves, up to a 1+o(1) factor, a seminal conjecture of Spielman and Teng.en_US
dc.publisherSpringer International Publishingen_US
dc.relation.isversionofhttps://doi.org/10.1007/s00039-025-00707-zen_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceSpringer International Publishingen_US
dc.titleOn the Spielman-Teng Conjectureen_US
dc.typeArticleen_US
dc.identifier.citationSah, A., Sahasrabudhe, J. & Sawhney, M. On the Spielman-Teng Conjecture. Geom. Funct. Anal. 35, 633–671 (2025).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.relation.journalGeometric and Functional Analysisen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2025-03-27T13:47:54Z
dc.language.rfc3066en
dc.rights.holderThe Author(s), under exclusive licence to Springer Nature Switzerland AG
dspace.embargo.termsY
dspace.date.submission2025-03-27T13:47:54Z
mit.journal.volume35en_US
mit.licensePUBLISHER_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record