MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Artificial intelligence for telemedicine diabetic retinopathy screening: a review

Author(s)
Nakayama, Luis Filipe; Zago Ribeiro, Lucas; Novaes, Frederico; Miyawaki, Isabele Ayumi; Miyawaki, Andresa Emy; de Oliveira, Juliana Angélica Estevão; Oliveira, Talita; Malerbi, Fernando Korn; Regatieri, Caio Vinicius Saito; Celi, Leo Anthony; Silva, Paolo S; ... Show more Show less
Thumbnail
DownloadPublished version (1.853Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
PURPOSE: This study aims to compare artificial intelligence (AI) systems applied in diabetic retinopathy (DR) teleophthalmology screening, currently deployed systems, fairness initiatives and the challenges for implementation. METHODS: The review included articles retrieved from PubMed/Medline/EMBASE literature search strategy regarding telemedicine, DR and AI. The screening criteria included human articles in English, Portuguese or Spanish and related to telemedicine and AI for DR screening. The author's affiliations and the study's population income group were classified according to the World Bank Country and Lending Groups. RESULTS: The literature search yielded a total of 132 articles, and nine were included after full-text assessment. The selected articles were published between 2004 and 2020 and were grouped as telemedicine systems, algorithms, economic analysis and image quality assessment. Four telemedicine systems that perform a quality assessment, image preprocessing and pathological screening were reviewed. A data and post-deployment bias assessment are not performed in any of the algorithms, and none of the studies evaluate the social impact implementations. There is a lack of representativeness in the reviewed articles, with most authors and target populations from high-income countries and no low-income country representation. CONCLUSIONS: Telemedicine and AI hold great promise for augmenting decision-making in medical care, expanding patient access and enhancing cost-effectiveness. Economic studies and social science analysis are crucial to support the implementation of AI in teleophthalmology screening programs. Promoting fairness and generalizability in automated systems combined with telemedicine screening programs is not straightforward. Improving data representativeness, reducing biases and promoting equity in deployment and post-deployment studies are all critical steps in model development.
Date issued
2023-12-12
URI
https://hdl.handle.net/1721.1/164274
Department
Institute for Medical Engineering and Science
Journal
Annals of Medicine
Publisher
Taylor & Francis
Citation
Nakayama, L. F., Zago Ribeiro, L., Novaes, F., Miyawaki, I. A., Miyawaki, A. E., de Oliveira, J. A. E., … Silva, P. S. (2023). Artificial intelligence for telemedicine diabetic retinopathy screening: a review. Annals of Medicine, 55(2).
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.